
Automatic SPARQL Benchmark Generation Using
FEASIBLE

Muhammad Saleem1, Qaiser Mehmood2, and Axel-Cyrille Ngonga Ngomo1

1 Universität Leipzig, IFI/AKSW, PO 100920, D-04009 Leipzig
{lastname}@informatik.uni-leipzig.de

2 Insight Center for Data Analytics, National University of Ireland, Galway
qaiser.mehmood@insight-centre.org

Abstract. Benchmarking is indispensable when aiming to assess technologies
with respect to their suitability for given tasks. In this demo, we present the
interface of FEASIBLE, an automatic approach for the generation of benchmarks
out of the sets of queries. The generation is achieved by selecting prototypical
queries of a user-defined size from an input set of queries. In our demo, we
focus on the functionality offered by the interface, especially for pre-selecting
the queries to be considered while generating the benchmark. We evaluate the
usability of the interface by using the standard system usability scale questionnaire.
Our overall usability score of 74.06 suggests that FEASIBLE’s interface is easy to
use, consistent, and the various functions in the system are well integrated.

1 Introduction

Most Linked Data applications rely on triple stores for data storage [6]. The performance
of triple stores is hence of central importance for Linked-Data-based software. Several
benchmarks have been proposed to assess the performance of triple stores [9]. However,
many of these benchmarks rely either on synthetic data or synthetic queries. Previous
works [3,2,7,9] point out that artificial benchmarks are mostly unable to reflect the
characteristics of real datasets and queries (i.e., query logs). The DBpedia SPARQL
Benchmark (DBPSB) [6] addresses a portion of these drawbacks partly by evaluating the
performance of triple stores based on real DBpedia query logs. The main drawback of this
benchmark is still that it does not consider important query features (e.g., number of join
vertices, triple patterns selectivities or query execution times etc.) which greatly affect
the performance of triple stores [1,4] during the query selection process. Furthermore, it
only considers one of the four SPARQL query forms (i.e., SELECT).

These problems are addressed by FEASIBLE [9],3 a benchmark generation frame-
work able to generate benchmarks from a set of queries (in particular from query logs).
FEASIBLE aims to generate customized benchmarks for given use cases or needs of
an application. To this end, FEASIBLE assumes that it is given a set of queries as
well as the number of queries (e.g., 25) to be included into the benchmark as input.
With the FEASIBLE interface, which is the focus of this paper, users are then enabled
to choose the queries that they deem relevant for the benchmark generation through

3 Accepted in the ISWC 2015 research track



(a) Clauses (b) Features

Fig. 1: The FEASIBLE filters panels

a series of filters. For example, the users can choose to only include queries with a
result size greater than 50 and between 2 and 5 triple patterns. A simple click then
launches FEASIBLE on the selected subset of queries and returns a benchmark tailored
towards the user’s need and requirements. FEASIBLE is open-source and available
online at https://code.google.com/p/feasible/. A demo can be found
at http://feasible.aksw.org/. In the following, we present and evaluate the
features of FEASIBLE’s demo interface.

2 The FEASIBLE Interface

In the demo, we will explain and present the features of the FEASIBLE interface. The
main interface comprises three main panels: the clause filter panel, the feature selection
panel, and (3) the form selection panel. In the following, we explain each of these panels
in details.

2.1 Clause Filter Panel

This panel is used for selecting queries based on the the most commonly used SPARQL
clauses [8]. To this end, the user is enable to write a disjunctive normal form of clauses.
Only queries which abide by these filters are given the FEASIBLE as input for the bench-
mark generation. An example filter ((DISTINCT AND FILTER) OR (LIMIT)) is
shown in Figure 1a. By applying this filter, all of the benchmark queries will either
contain both DISTINCT and FILTER clauses or the LIMIT clause.

2.2 Feature Selection Panel

This panel is used for applying filters on those query features which have been shown
to greatly affect the performance of triple stores [1,4]. Like in the previous panel, the

https://code.google.com/p/feasible/
http://feasible.aksw.org/


(a) Query forms selection panel
(b) Voronoi diagram of the benchmark

Fig. 2: The FEASIBLE query forms selection panel and the output Voronoi diagram

user can create a disjunction of any conjunction of the query features. In addition, the
user can specify the minimum and maximum ranges on the selected feature. An ex-
ample filter ((TriplePatternsCount >= 2 AND TriplePatternsCount
<= 10) OR (ResultSize >= 50) is shown in Figure 1a. By applying this filter,
all of the benchmark queries will either contain between 2 and 10 triple patterns or the
size of their result set will be at least 50.

2.3 Form Selection Panel

This panel is used to select the basic query forms to use in the benchmark, i.e., SELECT,
CONSTRUCT, DESCRIBE, and ASK. The number of queries to be included in the
benchmark can also be selected. The form selection panel shown in Figure 2a will
generate a 5-query benchmark with no SPARQL CONSTRUCT and DESCRIBE queries.

The Voronoi diagram shown in Figure 2b shows the generated 125-queries benchmark
along with benchmark queries (highlighted in red) for the DBpedia query log. During
the demo, we will present different configurations as well as allow participants to create
their own benchmarks. Additional features of our interface include uploading a set of
queries as well as downloading the resulting benchmark query by query or as one file.

3 Evaluation

An evaluation of FEASIBLE can be found in [9]. To assess the usability of our system,
we used the standardized, ten-item Likert scale-based System Usability Scale (SUS)
[5] questionnaire4. The SUS is a reliable, low-cost usability scale that can be used for
global assessments of systems usability[5]. The survey was posted through Twitter with
the ISWC2015 hashtag and was filled by 16 users5 (by 30th June 2015). The results of
SUS usability survey is shown in Figure 3. We achieved a mean usability score of 74.06
indicating a high level of usability according to the SUS score. The responses to question
1 suggests that our system is adequate for frequent use (average score to question 1 =

4 Our survey can found at: http://goo.gl/forms/UEK4ZQSuYC
5 Summary of the responses can be found at: https://goo.gl/3h1Lkp

http://goo.gl/forms/UEK4ZQSuYC
https://goo.gl/3h1Lkp


0 1 2 3 4 5 6

I think that I would like to use this system frequently (1)

I found the system unnecessarily complex (2)

I thought the system was easy to use (3)

I think that I would need the support of a technical person to be able to use this system (4)

I found the various functions in this system were well integrated (5)

I thought there was too much inconsistency in this system (6)

I would imagine that most people would learn to use this system very quickly (7)

I found the system very cumbersome to use (8)

I felt very confident using the system (9)

I needed to learn a lot of things before I could get going with this system (10)

Avg. STD.

Fig. 3: Result of usability evaluation using SUS questionnaire.

3.67 ± 1.07) by users all of type. The responses to question 3 (average score 4.25 ±
0.68) suggests that FEASIBLE is easy to use and the responses to question 5 indicates
that the various functions are well integrated (average score 4.18 ± 1.04).

4 Conclusion and Future Work

In this paper we presented the FEASIBLE demo interface. Our SUS usability score sug-
gest that the majority of the users felt confident using our demo interface. As underlying
resource for our future work, we have converted linked data query logs into RDF and
made available through LSQ [8] endpoint6. Beside the key characteristics discussed in
Figure 1, we have attached many of the SPARQL 1.1 features to each of the queries. We
will extend FEASIBLE to query this SPARQL endpoint directly to gather queries for the
benchmark creation process.

References

1. Güneş Aluç, Olaf Hartig, M Tamer Özsu, and Khuzaima Daudjee. Diversified stress testing of
rdf data management systems. In ISWC. 2014.

2. Mario Arias, Javier D. Fernández, Miguel A. Martı́nez-Prieto, and Pablo de la Fuente. An
empirical study of real-world SPARQL queries. CoRR, 2011.

3. Songyun Duan, Anastasios Kementsietsidis, Kavitha Srinivas, and Octavian Udrea. Apples
and oranges: A comparison of rdf benchmarks and real rdf datasets. In SIGMOD, 2011.

4. Olaf Görlitz, Matthias Thimm, and Steffen Staab. Splodge: Systematic generation of sparql
benchmark queries for linked open data. In ISWC. 2012.

5. James R Lewis and Jeff Sauro. The factor structure of the system usability scale. In HCD.
2009.

6. Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga Ngomo. Dbpedia
sparql benchmark - performance assessment with real queries on real data. In ISWC, 2011.

7. Francois Picalausa and Stijn Vansummeren. What are real sparql queries like? In SWIM, 2011.
8. Muhammad Saleem, Intizar Ali, Aidan Hogan, Qaiser Mehmood, and Axel-Cyrille Ngonga

Ngomo. LSQ: The linked sparql queries dataset. In ISWC, 2015.
9. Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. FEASIBLE: A

featured-based sparql benchmark generation framework. In ISWC, 2015.

6 LSQ homepage: http://aksw.github.io/LSQ/

http://aksw.github.io/LSQ/

	Automatic SPARQL Benchmark Generation Using FEASIBLE

