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Abstract. Engineering the Data Web in the Big Data era demands the
development of time- and space-efficient solutions for covering the lifecy-
cle of Linked Data. As shown in previous works, using pure in-memory
solutions is doomed to failure as the size of datasets grows continuously
with time. We present a study of caching solutions for one of the central
tasks on the Data Web, i.e., the discovery of links between resources.
To this end, we evaluate 6 different caching approaches on real data
using different settings. Our results show that while existing caching
approaches already allow performing Link Discovery on large datasets
from local resources, the achieved cache hits are still poor. Hence, we
suggest the need for dedicated solutions to this problem for tackling the
upcoming challenges pertaining to the edification of a semantic Web.
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1 Introduction

The Web of Data is now an integral part of the Web which contains more
than 60 billion facts pertaining to diverse domains including geo-spatial enti-
ties, bio-medicine and entertainment.1 The architectural paradigm underlying
the creation of data sources on the Data Web is very similar to that of the
document Web and has led to creation of more than 300 knowledge bases, of
which the largest pertain to geo-spatial data (LinkedGeoData) and medicine
(LinkedTCGA). One of the most demanding steps while publishing data on the
Data Web is the creation of links between knowledge bases. Here, the idea is to
connect resources across knowledge bases to facilitate the development of appli-
cations based on distributed data, e.g., federated query processing and question
answering.2

Formally, the link discovery problem can defined as follows [10]: Given two
knowledge bases S and T as well as a relation R, find all the pairs (s, t) such that
R(s, t). For example, S could be the set of all cities in DBpedia while T could
be the set of all provinces in LinkedGeoData while R could be the locatedIn

1 http://lod-cloud.net/state/
2 http://www.w3.org/DesignIssues/LinkedData.html
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relation, which links two resources s and t when the polygon corresponding to
s is completely contained in the polygon corresponding to t. Computing the set
M ⊆ S×T of pairs that abide by R is quadratic in complexity when addressed in
a naive manner. Hence, exisiting framework aim to approximateM by computing
the set M ′ = {(s, t) : δ(s, t) ≤ θ}, where θ is a threshold and δ is a distance
function. Carrying out the computation of M ′ in a naive fashion is quadratic in
time-complexity and linear in space complexity. Hence a large number of time-
efficient algorithms for link discovery have been developed over the last years. To
the best of our knowledge, all current imlementations of such algorithms assume
that the data to link (i.e., the sets S and T ) can be held in memory. Novel
works however show that this assumption is erroneous as large data sets such as
LinkedGeoData and LinkedTCGA do not fit in the memory of machines used
commonly for link discovery.

In this paper, we study how caching algorithms can be used to improve the
space behavior of link discovery algorithms and how well the current approaches
perform. To this end, we begin by presenting an architecture for combining
caching and efficient link discovery approaches based on blocking and filtering.
Thereafter, we present the set of caching algorithms. Then, we evaluate the
performance of these algorithms on real data using the ORCHID algorithm as
link discovery approach. We conclude the paper with a summary of our insights
and a discussion of possible future work.

2 Caching

In this section, we present how caching can be used for Link Discovery. In partic-
ular, we begin by giving a general idea of the use of caching for Link Discovery.
Thereafter, we present the caching approaches evaluated in this paper.

2.1 Caching for Link Discovery

Most time-efficient approaches for link discovery rely on reducing the number of
comparisons of s and t by grouping elements of the source set to Si ⊆ S and
elements of the target set to subsets Tj ⊆ T and only comparing certain Si with
certain Tj . For example, two strings have a distance less or equal to 1 w.r.t. to
the edit distance if they share at least one letter. If we assume that the resources
in S and T are described by their labels and that δ is the edit distance on labels,
then we can group the elements of S by the letters contained in their labels. In
this case, Si would be the subset of S such that the label of each of the resources
in Si contains the ith letter of the alphabet. If we define Tj similarly, then we
would not need to compare Si with Tj if i 6= j, leading to several comparisons
not having to be carried out at all.

The insight behind the use of caching for link discovery is that even when
the sets S and T do not fit in memory, single elements of S and T do. Hence,
given an element s of S, the data necessary to find all t ∈ T such that δ(s, t) ≤ θ
can be loaded in memory as required. Elements of t or even whole subsets Ti of
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T that are commonly used during computations should be cached so as to be
read from memory during computations instead of being loaded from the hard
drive, which is obviously more time-consuming.

We implemented these insights as follows (see Algorithm 1): Let A be a time-
efficient algorithm and A(s) ⊆ T be the set of all elements of T that are to be
compared with s according the to algorithm A. We iterate over all s ∈ S and
call the function load(A(s)). This function encapsulates the cache and loads
the portions of A(s) that can be found in memory (i.e., in the cache) directly
from the memory. The portions that cannot be found in the cache are loaded
from external memory (e.g., the hard drive) sequentially and sent to the cache
as well as to the compare method, which checks each of the loaded t for whether
σ(s, t) ≥ θ holds.

Data: Source S, target T , distance measure δ, distance threshold θ
Result: Set M ⊆ S × T
M = ∅;
for s ∈ S do

A = load(s);
for t ∈ A do

if compare (s, t) == true then
M = M ∪ {(s, t)}

end

end
return M;

end

Algorithm 1: Basic caching-based approach to link discovery

2.2 Approaches

Caching strategies have several characteristics and can be classified by these [15].
These characteristics are the time since the last reference to an element in the
cache (recency), the number of requests to an element in the cache (frequency),
the size of an element in the cache (size), the cost to fetch an element (cost), the
time since the last modification (modification), the time when an element gets
stale and can be evicted from the cache (expiration) [15].

We choose as simple strategies First-In First-Out (FIFO) and First-In First-
Out Second Chance (FIFO2ndChance), as a recency-based strategy Least Re-
cently Used (LRU), as a frequency-based strategy Least Frequently Used (LFU),
as a recency/frequency-based strategy Segmented Least Recently Used (SLRU)
and as a function-based strategy Least Frequently Used with Dynamic Aging
(LFUDA).
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FIFO is a simple strategy. Once the cache is full, the cache element that has
been longest in the cache is removed before the insertion of a new element. It is
based on the idea of first-in-first-out (FIFO) lists [16].

FIFO2ndChance is a modified FIFO strategy in the way that a cache element
that have been longest in the cache and was referenced in the past (i.e., used in
a previous computation) in the past is removed but inserted again only once so
that it gets a second chance. An unreferenced element that have been longest in
the cache is removed.

LRU is based on the locality of reference and thus tries to predict future accesses
to cache elements from previous accesses. The idea is to evict a cache element
that led to the oldest hit in the cache. One of the main drawback of this approach
is that the cache is not scan-resistant. Still, this is one of the most commonly
used approaches [1].

LFU is based on a count of the number of accesses to entries in the cache is kept.
The cache evicts the entries with the smallest frequency count when necessary.
This approach is scan-resistant but does not make use of the locality of reference.
The main drawbacks of this approach is that elements that were accessed often
in the past and thus having a high count of the number of accesses can remain
in the cache even when they are never requested in the future.

SLRU extends LRU by splitting the cache into an unprotected (US) and a
protected segment (PS), while the former is used for new cache elements the
later is reserved for popular elements. Both segments are LRU strategies but
only elements in the US are evicted. New elements are inserted into the US and
on an access to this element it is moved to the PS. Elements from the PS are
moved back to the US as the most recently used element when the PS gets full.

LFUDA avoids the cache pollution drawback of LFU with a dynamic aging
effect of the cached elements. It calculates a key value K for each element i in
the cache with Ki = Fi + L where Fi is the count of the number of accesses of
i and L is the running age factor of the cache. L starts at 0 and is updated for
each evicted element e to its key value (i.e., L = Ke). The strategy evicts the
element with the smallest key value from the cache.

3 Experiments and Results

The goal behind our experiments was to determine whether current state-of-the
art caching algorithms can be used for link discovery. To this end, we assesses the
performance of different caching approaches on real data w.r.t. to the runtime
they required and the numbers of hits they were able to achieve. In the follow-
ing, we begin by presenting the experimental setup used for our experiments.
Thereafter, we present and discuss our results.
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3.1 Experimental Setup

In the following, we present the setup used for our experiments.

Algorithm for Segmentation We used the ORCHID [10] algorithm to com-
pute the data segmentations. We used this algorithm for two reasons: First, it is
reduction-ratio-optimal and does not tend to overgenerate data segmentations.
Moreover, ORCHID can deal with geo-spatial data. This is important because
the (to the best of our knowledge) currently largest data set on the Linked Open
Data Cloud, i.e., LinkedGeoData, is a geo-spatial data set. Hence, the bias caused
by unnecessary comparisons could be minimized while the size of the datasets
used in our experiments could be maximized.

Data Set LinkedGeoData dataset was selected because it is the largest data
set on the Linked Open Data Cloud. It is a geospatial dataset generated by
converting the data from the OpenStreetMap project3 into RDF. Currently,
LinkedGeoData includes approximately 30 billion triples which describe a.o. 3.8
million ways. Within our experiments, we used the differently sized fragments of
the dump used in the original ORCHID paper, which contains all CBDs of ways
in LinkedGeoData.

Caching Algorithms We used the following approaches during our evaluation:
FIFO, FIFO2ndChance, LRU, SLRU, LFU and LFUDA. For all approaches the
evict size was set to be one. Variant cache sizes were used including 10, 100, 1K,
10K and 100K.

Setup The evaluation was carried out in two phases. In the first phase, the
size of data is 104 resources. Different distance thresholds of 0, 0.1, 0.3 and
0.5 km were used. Increasing the distance threshold results in the up rise of
the number of compared polygons. This imposes more polygons to be cached
and more computation time. The cache size was assigned to 103 for all caching
approaches in the first phase. We selected the best three approaches for the
second phase, which was a scalability evaluation. Here, we measured the number
of hits and runtime of the approaches. The promoted approaches were opposed
to different cache sizes measuring and comparing their run times and revealing
the best performed approach. Cache sizes were 101, 102, 103, 104 and 105. In
this phase the data size was increased to be 105 resources.

Hardware The evaluation was carried out on a laptop running an Intel CoreTM
i7 Quad Core 2.80GHz processor using 8G RAM.

3 http://www.openstreetmap.org/
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3.2 Results

In this section we present the results produced based on the aforementioned
exponential setup. Figures 1 and 2 show the results of the first series on a sample
of LinkedGeoData containing 104 resources, i.e., 104 polygons. The number of
cache hits for each of the caching approaches w.r.t. different distance thresholds
is presented in figure 1. It is noticeable that LFU achieves the lowest number
of cache hits. SLRU also shows lower number of cache hits compared to the
rest approaches that are almost close in the results. In figure 2, the runtimes of
the different caching approach is depicted and it suggests that LRU, SLRU and
FIFO have the lowest run times relative to different distance thresholds. It is
clear that the lower number of hits the caching approach provides the longer time
it takes for fetching or replacing the targeted data. In FIFO fetching and evicting
data are performed in time complexity O(1). The simple iteration on polygons
indexes implement by ORCHID the number of hits is high. For LRU and SLRU
approaches, their implementations tend to avoid time-consuming updates for
cache entries. Given that all approaches achieve similar numbers of cache hits
the run time turns to be the effective factor in selecting the approaches for the
next phase. Tables 1 and 2 give detailed insight on achieved results in this phase.
The presented runtime values in Table 1 are in seconds for the sake of readability.
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Fig. 1. Number of cache hits for different distance thresholds (dataset size = 104

resources)

The results of the second phase for different cache sizes are illustrated in
figures 3.2 and 3.2. Note that we used a larger dataset of size 105 for this series
of experiments. In contrast to the results of previous phase, the runtimes for
LRU, SLRU and FIFO approaches are quite similar as shown in figure 3.2. This
similarity is due previously mentioned reasons in first phase. Figure 3.2 shows
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Fig. 2. Runtimes of the different caching approaches for different distance thresholds
(dataset size = 104 resources)

Table 1. Runtimes of the different caching approachesand varying distance thresholds
(dataset size = 104 resources)

CacheType Distance Threshold= 0 Distance Threshold= 0.1 Distance Threshold= 0.3 Distance Threshold= 0.5

FIFO 278.4 97098.9 347.7 372.8

FIFO2ndChance 9120.6 40228.7 11285.2 11242.9

LRU 321.3 386.5 423.7 440.3

SLRU 343.8 388.1 437 435.8

Lfu 3903.2 98271.1 100202 35161.7

LfuDA 343.8 42185.1 42216.3 33240.6

the superiority of LRU and FIFO in number of hits in accordance with cache
sizes. Detailed results are presented in tables 3 and 4.

Overall, FIFO and LRU seem to be test of the caching approaches presented
in this paper both in terms of run time and cache hits. However, a careful study
of the results they achieve makes clear that theit relative hit rates still lie below
50%. This suggests that while current caching approaches do have the potential
to reduce the runtime of link discovery approaches, dedicated approaches for
link discovery could improve the quality of caching. The study thus suggests
that dedicated approaches for link discovery should be investigated in futute
work to ensure the development of scalable link discovery approaches able to
deal with Big Data.

4 Related Work

A vast amount of literature has been produced to elucidate the problem of
Link Discovery [7, 9, 11–13]. Still, with the growth of the size of the dataset at
hand, improving the runtime of Link Discovery on large datasets becomes an
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Table 2. Number of hits for different caching approaches and varying distance thresh-
olds (dataset size = 104 resources).

CacheType Distance Threshold= 0 Distance Threshold= 0.1 Distance Threshold= 0.3 Distance Threshold= 0.5

FIFO 3456400 29052 3455933 3445072

FIFO2ndChance 3424230 3386093 3424230 3424270

LRU 3469912 3469912 3469404 3469871

SLRU 3082611 3073706 3082620 3082503

Lfu 3082611 29052 29059 29052

LfuDA 3082611 3369919 3363075 3369851
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Fig. 3. Cache hits for different cache sizes (dataset size = 105 resources)

increasingly urgent problem. Several approaches have been developed with the
goal of improving the performance of Link Discovery approaches [8, 11–13].

Caching follows the idea to store and reuse as much intermediary knowledge
as possible to improve the runtime of the given algorithm. One of the most
commonly used approaches is the Least Recently Used algorithm [14]. The idea
behind this approach is simply to evict the entry that led to the oldest hit when
the cache gets full. One of the main drawbacks of this approach is that the cache
is not scan-resistant. Meanwhile, a large number of scan-resistant extensions of
this approach have been created. For example, SLRU [6] extends LRU by split-
ting the cache into a protected and an unprotected area. The Least Frequently
Used (LFU) [2] approach relies on a different intuition. Here, a count of the num-

Table 3. Runtimes (seconds) for different cache sizes(dataset size = 105 resources)

CacheType Cache Size= 101 Cache Size= 102 Cache Size= 103 Cache Size= 104 Cache Size= 105

FIFO 721.7 678.8 669.9 610.8 618.4

LRU 695.7 708.9 700.8 653.6 704.3

SLRU 714 907.4 658.7 694.2 700.6
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Fig. 4. Runtimes for different cache sizes (dataset size = 105 resources)

Table 4. Hit rates of different caching approaches for different cache sizes(dataset size
= 105 resources)

CacheType Cache Size= 101 Cache Size= 102 Cache Size= 103 Cache Size= 104 Cache Size= 105

FIFO 23927 2597652 18594739 33080982 56912799

LRU 23891 2610343 18726491 33130161 57118089

SLRU 34756 412958 15822935 30696531 53798204

ber of accesses to entries in the cache is kept. The cache evicts the entries with
the smallest frequency count when necessary. This approach is scan-resistant but
does not make use of the locality of reference. Consequently, it was extended by
window-based LFU [5], sliding window-based approaches [3] and dynamic aging
(LFUDA) [1] amongst others. Another commonly used caching strategy is based
on the idea of first-in-first-out (FIFO) lists [16]. When the cache is full, this ap-
proach evicts the entry that have been longest in the cache. The main drawback
of this approach is that it does not make use of locality. Thus, it was extended
in several ways, for example by the “FIFO second chance” approach [16]. Other
strategies such as Greedy Dual (GD?) [4] use a cost model to determine which
entries to evict.

5 Conclusion and Future Work

In this paper, we presented an evaluation of different caching approaches in-
tegrated for link discovery. We used ORCHID as link discovery algorithm and
measured the effect of cache sizes, dataset sizes and the distance thresholds on
the performance of different caching strategies using real data. FIFO and LRU
approaches were determine to be the best approaches for caching data when car-
rying out link discovery. Still, the relative hit rates of these approaches lie by less
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than 50%. Hence, our study suggests the need for dedicated caching approaches
for link discovery. The development of such approaches will be carried out in
future work.
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