
HAWK – Hybrid Question Answering using Linked
Data

Ricardo Usbeck1, Axel-Cyrille Ngonga Ngomo1, Lorenz Bühmann1, and Christina
Unger2

1 University of Leipzig, Germany
{usbeck,ngonga}@informatik.uni-leipzig.de

2 University of Bielefeld, Germany
cunger@cit-ec.uni-bielefeld.de

Abstract. The decentral architecture behind the Web has led to pieces of in-
formation being distributed across data sources with varying structure. Hence,
answering complex questions often required combining information from struc-
tured and unstructured data sources. We present HAWK, a novel entity search
approach for Hybrid Question Answering based on combining Linked Data and
textual data. The approach uses predicate-argument representations of questions
to derive equivalent combinations of SPARQL query fragments and text queries.
These are executed so as to integrate the results of the text queries into SPARQL
and thus generate a formal interpretation of the query. We present a thorough
evaluation of the framework, including an analysis of the influence of entity an-
notation tools on the generation process of the hybrid queries and a study of
the overall accuracy of the system. Our results show that HAWK achieves 0.68
respectively 0.61 F-measure within the training respectively test phases on the
Question Answering over Linked Data (QALD-4) hybrid query benchmark.

1 Introduction

Recent advances in question answering (QA) over Linked Data provide end users with
more and more sophisticated tools for querying linked data by expressing their informa-
tion need in natural language [16,18,19]. This allows access to the wealth of structured
data available on the Semantic Web also to non-experts. However, a lot of information is
still available only in textual form, both on the Document Web and in the form of labels
and abstracts in Linked Data sources [9]. Therefore, a considerable number of questions
can only be answered by using hybrid question answering approaches, which can find
and combine information stored in both structured and textual data sources [21].

In this paper, we present HAWK, the (to best of our knowledge) first full-fledged
hybrid QA framework for entity search over Linked Data and textual data. Given an in-
put query q, HAWK implements an 8-step pipeline, which comprises 1) part-of-speech
tagging, 2) detecting entities in q, 3) dependency parsing and 4) applying linguistic
pruning heuristics for an in-depth analysis of the natural language input. The results of
these first four steps is a predicate-argument graph annotated with resources from the
Linked Data Web. HAWK then 5) assign semantic meaning to nodes and 6) generates
basic triple patterns for each component of the input query with respect to a multitude of

features. This deductive linking of triples results in a set of SPARQL queries containing
text operators as well as triple patterns. In order to reduce operational costs, 7) HAWK
discards queries using several rules, e.g., by discarding not connected query graphs.
Finally, 8) queries are ranked using extensible feature vectors and cosine similarity.

Our main contributions can be summarized as follows:

– We present the first QA framework tackling hybrid question answering;
– HAWK analyses input queries based on predicate-argument trees to deeply under-

stand and match semantic resources;
– Our framework is generic as it does not rely on templates. It is thus inherently able

to cover a wide variety of natural language questions as well as knowledge bases
with various topologies;

– The modular architecture of HAWK allows simple exchanging of pipeline parts to
enhance testing and deployment;

– Our evaluation suggests that HAWK is able to achieve f-measures of 0.61 on rather
small training datasets.

The rest of the paper is structured as follows: Afterwards, our methodology is ex-
plained in detail in Section 2. HAWK’s performance and the influence of entity anno-
tation systems is evaluated in Section 3. Section 4 discusses related work. Finally, we
conclude in Section 5. Additional information can be found at our project home page
http://aksw.org/Projects/HAWK.html.

2 Method

In the following, we describe the architecture and methodology of HAWK. We explain
our approach by using the following running example: Which recipients of
the Victoria Cross died in the Battle of Arnhem?While this ques-
tion cannot be answered by using solely DBpedia or Wikipedia abstracts, combining
knowledge from DBpedia and Wikipedia abstracts allows deriving an answer to this
question. More specifically, DBpedia allows to retrieve all recipients of the Victoria
Cross using the triple pattern ?uri dbo:award dbr:Victoria Cross.

In order to find out whether the returned resources died in the Battle of Arnhem,
the free text abstract of those resources need to be checked. For example, the abstract
for John Hollington Grayburn contains the following information: ‘he went into action
in the Battle of Arnhem [...] but was killed after standing up in full view of a German
tank’.

Figure 1 gives an overview of the architecture of HAWK. In the following we de-
scribe the depicted steps in more details.

2.1 POS-Tagging

A large number of frameworks have been developed for these purposes over the last
years. We rely on clearNLP [3] which is based on transition-based dependency parsing.
Regarding our running examples the following POS-tags are generated: Which(WDT)
recipients(NNS) of(IN) the(DT) Victoria(NNP) Cross(NNP)
died(VBN) in(IN) the(DT) Battle(NNP) of(IN) Arnhem(NNP)?

Document Web Semantic Web

POS-Tagging Entity
Annotation

Dependency
Parsing

Linguistic
Pruning

Semantic
Pruning

SPARQL
Generation

Semantic
AnnotationRanking

Input
Question

Output
Entities

Fig. 1: Architectural overview of HAWK.

2.2 Entity Annotation

HAWK identifies named entities and tries to link them to semantic entities from the
underlying knowledge base, in our case DBpedia 3.9, via well-established entity anno-
tation tools:

– Wikipedia Miner [14] is based on different facts like prior probabilities, context
relatedness and quality, which are then combined and tuned using a classifier.

– DBpedia Spotlight [13] was published in 2011. This tool combines named entity
recognition and disambiguation based on DBpedia.

– TagMe 2 [6] is based on a directory of links, pages and an inlink graph from
Wikipedia. The approach recognizes entities by matching terms with Wikipedia
link texts and disambiguates the match using the in-link graph and the page dataset.

– FOX [17] has been introduced 2014 as an ensemble learning-based approach com-
bining several state-of-the-art named entity recognition approaches. The FOX frame-
work outperforms the current state of the art entity recognizer and relies on the
entity linking tool AGDISTIS [22].

Additionally, we implemented two artificial spotters for evaluation:

– Union is a spotter that combines the result sets of the above introduce spotters and
returns thus a superset of all spotters.

– Optimal will spot all entities from the gold standard to be able to ignore spotting
influences in the following steps of the pipeline.

For our running example, an optimal spotter identifies Victoria Cross and
Battle of Arnhem as resources form DBpedia. HAWK annotates the POS-tag ADD
to it. The influence of the entity annotation module is evaluated in Section 3.

2.3 Dependency Parsing

HAWK performs noun phrase detection for semantically meaningful word groups not
yet recognized by the entity annotation system. This detection reuses the above men-
tioned POS-tagger. Input tokens will be combined following linguistic heuristics de-
rived from the benchmark questions, and their POS-tag is changed to CNN. The full
algorithm is depicted in Algorithm 1. HAWK’s modular structure allows for an easy
exchange of the POS-tagger or dependency parser.

Algorithm 1: Algorithm for combining noun phrases
Data: Tokenized question (list) with Part-of-Speech-tags (POS-tags)
subsequence = ();
for t ∈ [0, |list|] do

token = list.get(∈);
if subsequence = ∅ then

if pos(t) ∈ (CD|JJ|NN(.)∗|RB(.)∗) then subsequence.add(token) ;
else

if t+ 1 < |list| ∧ pos(t) ∈ (IN) ∧ pos(t+ 1) ∈ ((W)?DT) then
if subsequence.size() >= 2 then combine(subsequence) ;
subsequence = ();

else if pos(t− 1) ∈ (NNS) ∧ pos(t) ∈ (NNP(S)?) then
if subsequence.size() > 2 then combine(subsequence) ;
subsequence = ();

else if !pos(t− 1) ∈ (JJ|HYPH) ∧ (pos(t) ∈ (VB|WDT|IN))) then
if subsequence.size() > 1 then combine(subsequence) ;
subsequence = ();

else if pos(t) ∈ (NN(.)∗|RB|CD|CC|JJ|DT|IN|PRP|HYPH|VBN)
then

subsequence.add(token)
else

subsequence = ();
end

end

Subsequently, in order to capture linguistic and semantic relations, HAWK parses
the query using dependency parsing and semantic role labeling [3]. The generated pre-
dicate-argument tree is directed, acyclic and all its nodes contain their POS-tags as well
as their labels, see Figure 2.

2.4 Linguistic Pruning

The natural language input can contain tokens that are meaningless for retrieving the
target information or even introduce noise in the process. HAWK therefore prunes nodes
from the predicate-argument tree based on their POS-tags, e.g., deleting all DET nodes,
interrogative phrases such as Give me or List, and auxiliary tokens such as did.
Algorithm 2 details the algorithm for removing nodes. Figure 3 depicts the predicate-
argument tree obtained for our running example after pruning.

Algorithm 2: Algorithm for pruning noisy nodes
Data: Dependency-argument tree with Part-of-Speech-tags
Queue queue = [tree.getRoot()];
while queue! = ∅ do

node = queue.poll();
for pos(node) ∈ (WDT|POS|WP$|PRP$|RB|PRP|DT|IN|PDT) do

if pos(node) == posTag then tree.remove(tmp) ;
queue.add(node.getChildren());

end
end
if root.label == (”Give”) then

for childNode ∈ root.getChildren() do
if childNode == ”me” then tree.remove(childNode) ;

end
end
if root.label ∈ {”List”, ”Give”} then tree.remove(root) ;

Fig. 2: Predicate-argument tree for the example
question ‘Which recipients of the Victoria Cross
died in the Battle of Arnhem?’

Fig. 3: Tree after pruning.

2.5 Semantic Annotation

After linguistic pruning, HAWK annotates each node in the tree with possible con-
cepts from the knowledge base and its underlying ontology. To this end, our framework
uses information about possible verbalizations of ontology concepts, based on both
rdfs:label information from the ontology itself and (if available) verbalization in-
formation contained in lexica. In general, such lexica offer a range of lexical variants
beyond the labels present in DBpedia. For example, for the property spouse, the DB-
pedia English lexicon3 provides the noun entries ‘wife’ and ‘husband’ as well as the
verb entry ‘to marry’.

HAWK now tries to match each node label to a class or property from the DBpedia
ontology using fuzzy string matching. Moreover, HAWK follows intuitions used in [18]
to lower the number of annotations avoiding additional computational effort. In partic-
ular, we consider the POS-tag of nodes to determine the type of the target reference:

3 https://github.com/cunger/lemon.dbpedia

– nouns correspond to object type properties and classes
– verbs correspond to object type properties
– question words (e.g., who or where) correspond to classes (e.g., Person or
Place)

Afterwards, HAWK ranks properties according to their prominence score in the
knowledge base and returns only the top n properties. If the search does not retrieve any
annotations, we additionally ask the lemmata of the node label and repeat the above
described process.

Considering our running example, Table 1 presents possible matches for the nodes
died (VB) and recipients (NNS). After this step, either a node is annotated
with a reference from the knowledge base, it is a disambiguated resource or it will be
lead to a full-text lookup to be resolved to a knowledge base resource.

Annotation

died dbo:deathplace, dbo:deathdate
recipients dbo:award

Table 1: Annotations of nodes from running example.

2.6 Generating SPARQL Queries

The core of HAWK is the generation of SPARQL queries from annotated and pruned
predicate-argument trees. To capture the full semantics of an input question, HAWK
traverses the predicated-argument tree in a pre-order walk to reflect the empirical ob-
servation that i) related information are situated close to each other in tree and ii) infor-
mation are more restrictive from left to right. This breadth-first search visits each nodes
and generates several possible triple patterns based on the number of annotations and
the POS-tag itself. That is, for each node a set of SPARQL query patterns is generated
following the rules depicted in Table 3 w.r.t. ontology type information, e.g., a variable
bound to the class Place will not have an outgoing predicate birthPlace.

Using this approaches allows HAWK to be independent of SPARQL templates and
to work on natural language input of any length and complexity. Each pattern contains
at least one variable from a pre-defined set of variables, i.e., ?proj for the resource
projection variable, ?const for resources covering constraints related to the projection
variable as well as a variety of variables for predicates to inspect the surrounding of
elements in the knowledge base graph. Table 2 shows generated triple patterns for parts
of the example query.

During this process, each iteration of the traversal appends the generated patterns
to each of the already existing SPARQL queries. This combinatorial effort results in
covering every possible SPARQL graph pattern given the predicate-argument tree.

Node Type Query Fragment

CNN
?proj text:query (’Battle of Arnhem’)
?const text:query (’Battle of Arnhem’)

Verb
?proj dbo:deathPlace ?const
?const dbo:deathPlace ?proj

Table 2: Generated triple patterns for running example.

Node POS-tag and non-empty annotations Query Fragment

VB(.)* ?proj Annotation ?const.
VB(.)* ?const Annotation ?proj.
VB(.)* ?const ?proot ?proj.
NN(.)*|WRB ?proj Annotation ?const.
NN(.)*|WRB ?const Annotation ?proj.
NN(.)*|WRB ?proj a Annotation.
NN(.)*|WRB ?const a Annotation.
NN(.)*|WRB ?const text:query (node label)
WP ?const a Annotation.
WP ?proj a Annotation.
all ignore

Node POS-tag and empty annotations Query Fragment

CNN|NNP(.)*|JJ|CD ?proj text:query (node label)
CNN|NNP(.)*|JJ|CD ?const text:query (node label)
VB(.)* ?proj text:query (node label)
VB(.)* ?const text:query (node label)
ADD ?proj ?pbridge nodeURI.
ADD FILTER (?proj IN (nodeURI)
ADD ?proj text:query (node label)
ADD ?const text:query (node label)
NN|NNS ?proj text:query (node label)
NN|NNS ?const text:query (node label)
all ignore node

Table 3: Triple pattern for generating SPARQL queries while traversal.

2.7 Semantic Pruning of SPARQL Queries

Producing the n-fold-cross-product of possible pattern combinations generates a huge
amount of SPARQL queries, most of which are semantically senseless. To effectively
handle this large set of queries and reduce the computational effort, HAWK implements
various methods for pruning:

– #textfilter: HAWK can safely assume that SPARQL queries containing full-text
lookups over more than one variable or containing more than two node labels do
not yield semantically senseful information and thus discards such queries.

– #unbound triple pattern: SPARQL queries containing more than one triple pat-
tern of the form ?varx ?vary ?varz or one such triple pattern and only text
searches, lead to a traversal of large parts of the knowledge base graph and high
computational effort.

– Unconnected query graph: SPARQL query graphs which are not connected from
cartesian products are pruned for the sake of runtime and their lack of semantics.

– Cyclic triple: Queries containing edges of the form ?s <http://xyz> ?o.
?o <http://xyz> ?s or ?s <http://xyz> ?o. ?s <http://abc>
?o are also removed.

– Missing projection variable: The before mentioned traversal and SPARQL gen-
eration process can produce SPARQL queries without triple patterns containing the
projection variable. These queries are also removed from the set of queries.

– Disjointness: Also SPARQL queries with triple patterns violating disjointness
statements are discarded:
• ?s a cls . ?s p ?o . if cls and domain of p are disjoint
• ?o a cls . ?s p ?o . if cls and range of p are disjoint
• ?s p1 ?o1 . ?s p2 ?o2 . if domain of p1 and p2 are disjoint
• ?s1 p1 ?o . ?s2 p2 ?o . if range of p1 and p2 are disjoint
• ?s p1 ?o . ?s p2 ?o . if p1 and p2 are disjoint

Due to lack of explicit disjointness statements in many knowledge bases, we (heuris-
tically) assume that classes and properties that are not related via subsumption hi-
erarchy are disjoint.

Although semantic pruning drastically reduces the amount of queries, it often does
not result in only one query. HAWK thus requires a final ranking step before sending
the SPARQL query to the target triple store.

2.8 Ranking

HAWK ranks queries using supervised training based on the gold standard answer
set from the QALD-4 benchmark. In the training phase, all generated queries are run
against the underlying SPARQL endpoint. Comparing the results to the gold standard
answer set, HAWK stores all queries resulting with the same high F-measure. After-
wards the stored queries are used to calculate an average feature vector. HAWK’s rank-
ing calculation comprises the following components:

– NR OF TERMS calculates the number of nodes used to form the full-text query
part as described in Section 2.6.

– NR OF CONSTRAINTS counts the amount of triple patterns per SPARQL query.
– NR OF TYPES sums the amount of patterns of the form ?var rdf:type cls.
– PREDICATES generates a vector containing an entry for each predicate used in

the SPARQL query.

While running the test phase of HAWK, the cosine similarity between each SPARQL
query using the above mentioned features and the average feature vector of training
queries is calculated. Moreover, HAWK determines the target cardinality x, i.e., LIMIT
x, of each query using the indicated cardinality of the first seen POS-tag of the input
query. The performance of this ranking approach is evaluated in Section 3.

3 Evaluation

3.1 Benchmark

We evaluate HAWK against the QALD [20] benchmark. QALD has been used widely to
evaluate question answering systems, e.g., TBSL, SINA, FREyA or QAKiS, which are
presented above. In the recent fourth installment of QALD, hybrid questions on struc-
tured and unstructured data became a part of the benchmark. To evaluate HAWK, we
focus on this hybrid training dataset comprising 25 questions, 17 out of which are en-
tity searches using only DBpedia type information and no aggregation process. Before
evaluation, we had to curate the benchmark datasets regarding, among others, incorrect
grammar, typological errors, duplicate resources in the answer set. The cleaned datasets
can be found in our source code repository.4

3.2 Influence of the Entity Annotation System

First, we evaluated the influence of the applied entity annotation system to the overall
ability to produce correct answers. Thus, HAWK has been run using DBpedia Spotlight,
TagMe, Fox and Wikipedia Miner. Additionally, an optimal entity annotator derived
from the gold standard as well as an union of all entity annotation results was analysed.

Our results suggest that HAWK is able to retrieve correct answers with an f-measure
of 0.68 using FOX as entity annotation system and assuming an optimal ranking. Fur-
thermore, the optimal ranker is only able to achieve an F-measure of 0.58 since HAWK
can cope better with missing annotation results and is tuned towards retrieving full-
text information. Against intuition, the union annotator is the worst annotation system.
Merging all annotation results in queries consisting solely of semantic resources elimi-
nating the possibility to match ontology properties and classes to important parts of the
query. Thus, the Union annotator achieves only an f-measure of 0.10.5

3.3 Influence of the Ranking Method

Next, evaluating the effectiveness of the feature-based ranking has to include an in-
depth analysis of the contribution of each feature to the overall result. Thus, we cal-
culated the power set of the set of features and evaluated each feature group using the
f-measure reached by the top n queries. Figures 4 and 5 show the f-measure@N for
result sets of size N .

Delving deeper into this analysis, we find:

– Although NR OF TERMS produces the largest sum of f-measures as a single fea-
ture, NR OF CONSTRAINTS achieves a higher f-measure as soon as N = 7 due
to the larger number of needed constraints with respect to the query length.

– The highest mass of f-measure reaches the pair PREDICATES, NR OF TERMS
with an f-measure of 0.58 at N = 10. However, HAWK is able to achieve a higher
f-measure of 0.61 at N = 10 using NR OF TERMS, NR OF CONSTRAINTS .

4 https://github.com/AKSW/hawk/tree/master/resources
5 Details on this evaluation can be found in the supplement on our project homepage.

1 2 3 4 5 6 7 8 9 10

Rank

0

10

20

30

40

50

60

F-
M

e
a
su

re
 (

%
)

PREDICATES
NR_OF_TYPES
NR_OF_TERMS
NR_OF_CONSTRAINTS

Fig. 4: F-measures on training dataset using N = [1, . . . , 10] and one feature.

1 2 3 4 5 6 7 8 9 10

Rank

0

10

20

30

40

50

60

70

F-
M

e
a
su

re
 (

%
)

NR_OF_TYPES + NR_OF_CONSTRAINTS
PREDICATES + NR_OF_TYPES
PREDICATES + NR_OF_TERMS
NR_OF_TYPES + NR_OF_TERMS
PREDICATES + NR_OF_CONSTRAINTS
NR_OF_TERMS + NR_OF_CONSTRAINTS

Fig. 5: F-measures on training dataset using N = [1, . . . , 10] and two features.

– The combination of three or all four features does not lead to an improvement of
the f-measure.

We consider ranking the resulting SPARQL queries most challenging with respect
to the fact that an ideal ranking can lead to F-measures up to 0.72 at N = 1.

3.4 Error Analysis

In the following, we analyze error sources in HAWK based on the training queries
failing to reach a higher F-measure. Table 4 shows for each entity search question from
the training dataset its evaluation results.

– Entity Annotation: Queries 1, 11 and 15 cannot be answered by HAWK due to
failing entity annotation. None of the tested annotation tools was able to either find
the resources Jane T. Austion nor G8 or Los Alamos. Without matching
entity annotations a full-text search retrieves too many matches for reaching high
precision values on limited result set.

– Missing type information: some of the resources of the gold standard do not have
appropriate type information leading to a high amount of queries that need to be
ranked correctly.

– Query structure: Queries like 11 or 15 inherit complex query structures leading
to a multitude of interpretations while generating the SPARQL query graph.

ID Question F-measure Precision Recall

1 Give me the currencies of all G8 countries. 0.0 0.0 0.0
2 In which city was the assassin of Martin Luther King

born?
1.0 1.0 1.0

3 Which anti-apartheid activist graduated from the Uni-
versity of South Africa?

1.0 1.0 1.0

5 Which recipients of the Victoria Cross died in the
Battle of Arnhem?

0.8 0.67 1.0

6 Where did the first man in space die? 1.0 1.0 1.0
8 Which members of the Wu-Tang Clan took their stage

name from a movie?
0.31 0.18 1.0

9 Which writers had influenced the philosopher that re-
fused a Nobel Prize?

0.71 0.56 1.0

11 Who composed the music for the film that depicts the
early life of Jane Austin?

0.0 0.0 0.0

14 Which horses did The Long Fellow ride? 1.0 1.0 1.0
15 Of the people that died of radiation in Los Alamos,

whose death was an accident?
0.67 1.0 0.5

16 Which buildings owned by the crown overlook the
North Sea?

0.25 0.14 1.0

17 Which buildings in art deco style did Shreve, Lamb
and Harmon design?

0.5 0.33 1.0

18 Which birds are protected under the National Parks
and Wildlife Act?

1.0 1.0 1.0

19 Which country did the first known photographer of
snowflakes come from?

1.0 1.0 1.0

20 List all the battles fought by the lover of Cleopatra. 1.0 1.0 1.0
22 Which actress starring in the TV series Friends owns

the production company Coquette Productions?
1.0 1.0 1.0

23 Dakar is the capital of which country member of the
African Union?

1.0 1.0 1.0

Table 4: Micro measures: Precision=0.70 Recall=0.85 F-measure=0.72 at 17 queries from QALD
4 training set. Red indicates inability to generate correct query, Blue indicates missing precision
and green missing recall.

4 Related Work

Hybrid question answering is related to the fields of hybrid search and question answer-
ing over structured data. In the following, we thus give a brief overview of the state of
the art in these two areas of research.

4.1 Hybrid Search

Hybrid search approaches use a combination of structured as well as unstructured data
to satisfy a user’s information need. Bhagdev et al. [1] describe an approach to hybrid
search combining keyword searches, Semantic Web inferencing and querying. The pro-
posed K-Search outperforms both keyword search and pure semantic search strategies.
Additionally, an user study reveals the acceptance of the Hybrid Search paradigm by
end users. A personalized hybrid search implementing a hotel search service as use
case is presented in [23]. By combining rule-based personal knowledge inference over
subjective data, such as expensive locations, and reasoning, the personalized hybrid
search has been proven to return a smaller amount of data thus resulting in more pre-
cise answers. Unfortunately, the paper does not present any qualitative evaluation and
it lacks source code and test data for reproducibility.

Both approaches presented above fail to answer natural-language questions. Be-
sides keyword-based search queries, some search engines already understand natural
language questions. Question answering is more difficult than keyword-based searches
since retrieval algorithms need to understand complex grammatical constructs.

4.2 Question Answering

Schlaefer et al. [15] describe Ephyra, an open-source question answering system and
its extension with factoid and list questions via semantic technologies. Using Wordnet
as well as a answer type classifier to combine statistical, fuzzy models and previously
developed, manually refined rules. The disadvantage of this system lies in the hand-
coded answer type hierarchy which prohibits its multi-lingual use.

Cimiano et al. [4] develop ORAKEL to work on structured knowledge bases. The
system is capable of adjusting its natural language interface using a refinement process
on unanswered questions. Using F-logic and SPARQL as transformation objects for
natural language user queries it fails to make use of Semantic Web technologies such
as reasoning and entity disambiguation.

Lopez et al. [11] introduce PowerAqua, another open source system, which is ag-
nostic of the underlying yet heterogeneous sets of knowledge bases. It detects on-the-fly
the needed ontologies to answer a certain question, maps the users query to Semantic
Web vocabulary and composes the retrieved (fragment-)information to an answer. How-
ever, PowerAqua is outperformed by TBSL (see below) in terms of accuracy w.r.t. the
state-of-the-art QALD 3 benchmark.

Damljanovic et al. [5] present FREyA to tackle ambiguity problems when using
natural language interfaces. Many ontologies in the Semantic Web contain hard to map
relations, e.g., questions starting with ’How long. . .’ can be disambiguated to a time
or a distance. By incorporating user feedback and syntactic analysis FREyA is able to
learn the users query formulation preferences increasing the systems question answer-
ing precision.

Cabrio et al. [2] present a demo of QAKiS, an agnostic QA system grounded in
ontology-relation matches. The relation matches are based on surface forms extracted
from Wikipedia to enforce a wide variety of context matches, e.g., a relation birth-
place(person, place) can be explicated by X was born in Y or Y is the birthplace of

X. Unfortunately, QAKiS matches only one relation per query and moreover relies on
basic heuristics which do not account for the variety of natural language in general.

Unger et al. [19] describe Pythia, a question answering system based on two steps.
First, it uses a domain-independent representation of a query such as verbs, determiners
and wh-words. Second, Pythia is based on a a domain-dependent, ontology-based in-
terface to transform queries into F-logic. Unfortunately, Pythia does not scale for larger
domains since manual mapping of ontology terms via LexInfo is required.

Moreover, Unger et al. [18] present a manually curated, template-based approach,
dubbed TBSL, to match a question against a specific SPARQL query. Combining natural
language processing capabilities with Linked Data leads to good benchmark results on
the QALD-3 benchmark (see below). TBSL cannot be used to a wider variety of natural
language questions due to its limited reportoire of 22 templates.

Shekarpour et al. [16] develop SINA a keyword and natural language query search
engine which is aware of the underlying semantics of a keyword query. The system is
based on Hidden Markov Models for choosing the correct dataset to query. Due to the
costly Hidden Markov Models SINAs answer time (on average 3.9s) is above enduser
expectations.

Treo [8] emphasis the connection between the semantic matching of input queries
and the semantic distributions underlying knowledge bases. The tool is provides an en-
tity search, a semantic relatedness measure and a search based on spreading activation.

Several industry-driven QA-related projects have emerged over the last years. For
example, DeepQA of IBM Watson [7], which was able to win the Jeopardy! challenge
against human experts. Further, KAIST’s Exobrain6 project aims to learn from large
amounts of data while ensuring a natural interaction with end users. However, it is yet
limited to Korean for the moment.

For further insights please refer to [10,12] which present surveys on existing ques-
tion answering approaches.

5 Conclusion

In this paper, we presented HAWK, the first hybrid QA system for the Web of Data. We
showed that by using a generic approach to generate SPARQL queries out of predicate-
argument structures, HAWK is able to achieve up to 0.68 F-measure on the QALD-4
benchmark. Our work on HAWK however also revealed several open research ques-
tions, of which the most important lies in finding the correct ranking approach to map
a predicate-argument tree to a possible interpretation. So far, our experiments reveal
that the mere finding of the right features for this endeavor remains a tedious problem.
We thus aim to apply automatic feature engineering approach from deep learning in
future works to automatically generate the correct ranking function. Moreover, we aim
to integrate HAWK in domain-specific information systems where the more specialized
context will most probably lead to higher F-measures. Finally, several components of
the HAWK pipelines are computationally very complex. Finding more time-efficient
algorithms for these steps will addressed in future works.

6 http://exobrain.kr/

Acknowledgments

This work has been supported by the ESF and the Free State of
Saxony and the FP7 project GeoKnow (GA No. 318159).

References

1. In The Semantic Web: Research and Applications, volume 5021 of Lecture Notes in Com-
puter Science. 2008.

2. E. Cabrio, J. Cojan, F. Gandon, and A. Hallili. Querying multilingual dbpedia with qakis.
In P. Cimiano, M. Fernández, V. Lopez, S. Schlobach, and J. Völker, editors, The Semantic
Web: ESWC 2013 Satellite Events - ESWC 2013 Satellite Events, Montpellier, France, May
26-30, 2013, Revised Selected Papers, volume 7955 of Lecture Notes in Computer Science,
pages 194–198. Springer, 2013.

3. J. D. Choi and M. Palmer. Getting the most out of transition-based dependency parsing. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies: short papers-Volume 2, pages 687–692. Association for
Computational Linguistics, 2011.

4. P. Cimiano, P. Haase, J. Heizmann, M. Mantel, and R. Studer. Towards portable natural
language interfaces to knowledge bases - the case of the ORAKEL system. Data Knowl.
Eng., 65(2):325–354, 2008.

5. D. Damljanovic, M. Agatonovic, H. Cunningham, and K. Bontcheva. Improving habitabil-
ity of natural language interfaces for querying ontologies with feedback and clarification
dialogues. J. Web Sem., 19:1–21, 2013.

6. P. Ferragina and U. Scaiella. Fast and Accurate Annotation of Short Texts with Wikipedia
Pages. IEEE software, 2012.

7. D. A. Ferrucci, E. W. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyanpur, A. Lally,
J. W. Murdock, E. Nyberg, J. M. Prager, N. Schlaefer, and C. A. Welty. Building watson: An
overview of the deepqa project. AI Magazine, 31(3):59–79, 2010.

8. A. Freitas, J. G. Oliveira, E. Curry, S. O’Riain, and J. C. P. da Silva. Treo: combining entity-
search, spreading activation and semantic relatedness for querying linked data. In Proc. of 1st
Workshop on Question Answering over Linked Data (QALD-1) at the 8th Extended Semantic
Web Conference (ESWC 2011), 2011.

9. D. Gerber, A.-C. Ngonga Ngomo, S. Hellmann, T. Soru, L. Bühmann, and R. Usbeck. Real-
time RDF extraction from unstructured data streams. In Proceedings of ISWC, 2013.

10. O. Kolomiyets and M.-F. Moens. A survey on question answering technology from an infor-
mation retrieval perspective. Inf. Sci., 181(24):5412–5434, Dec. 2011.

11. V. Lopez, M. Fernández, E. Motta, and N. Stieler. Poweraqua: Supporting users in querying
and exploring the semantic web. Semantic Web, 3(3):249–265, 2012.

12. V. Lopez, V. S. Uren, M. Sabou, and E. Motta. Is question answering fit for the semantic
web?: A survey. Semantic Web, 2(2):125–155, 2011.

13. P. N. Mendes, M. Jakob, A. Garcia-Silva, and C. Bizer. DBpedia Spotlight: Shedding
Light on the Web of Documents. In 7th International Conference on Semantic Systems
(I-Semantics), 2011.

14. D. Milne and I. H. Witten. Learning to link with wikipedia. In 17th ACM CIKM, 2008.
15. N. Schlaefer, J. Ko, J. Betteridge, G. Sautter, M. Pathak, and E. Nyberg. Semantic extensions

of the ephyra qa system for trec 2007. 2007.
16. S. Shekarpour, E. Marx, A.-C. N. Ngomo, and S. Auer. Sina: Semantic interpretation of user

queries for question answering on interlinked data. Web Semantics: Science, Services and
Agents on the World Wide Web, 2014.

17. R. Speck and A.-C. N. Ngomo. Ensemble learning for named entity recognition. In The
Semantic Web – ISWC 2014. 2014.

18. C. Unger, L. Bühmann, J. Lehmann, A. N. Ngomo, D. Gerber, and P. Cimiano. Template-
based question answering over RDF data. In A. Mille, F. L. Gandon, J. Misselis, M. Ra-
binovich, and S. Staab, editors, Proceedings of the 21st World Wide Web Conference 2012,
WWW 2012, Lyon, France, April 16-20, 2012, pages 639–648. ACM, 2012.

19. C. Unger and P. Cimiano. Pythia: Compositional meaning construction for ontology-based
question answering on the semantic web. volume 6716 of Natural Language Processing and
Information Systems: 16th International Conference on Applications of Natural Language
to Information Systems, NLDB 2011, Alicante, Spain, June 28-30, 2011. Proceedings, pages
153–160. Springer, 2011.

20. C. Unger, C. Forascu, V. Lopez, A. N. Ngomo, E. Cabrio, P. Cimiano, and S. Walter. Question
answering over linked data (QALD-4). In L. Cappellato, N. Ferro, M. Halvey, and W. Kraaij,
editors, Working Notes for CLEF 2014 Conference, Sheffield, UK, September 15-18, 2014.,
volume 1180 of CEUR Workshop Proceedings, pages 1172–1180. CEUR-WS.org, 2014.

21. R. Usbeck. Combining linked data and statistical information retrieval. In 11th Extended
Semantic Web Conference, PhD Symposium. Springer, 2014.

22. R. Usbeck, A.-C. Ngonga Ngomo, S. Auer, D. Gerber, and A. Both. Agdistis - graph-based
disambiguation of named entities using linked data. In International Semantic Web Confer-
ence. 2014.

23. D. Yoo. Hybrid query processing for personalized information retrieval on the semantic web.
Knowledge Base Systems, 27:211–218, 2012.

