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Abstract. Statistical data is immensely valuable as it influences deci-
sions in health care, policy and finance, among others. With the growth
of the open data movement, more and more statistical data is becoming
freely available. Consuming multidimensional numerical data requires
experts and specialized tools, however, which is alleviated by the RDF
Data Cube vocabulary which provides standardized access and context.
Semantic Question Answering systems provide intuitive access to RDF
data by transforming natural language queries into formal queries on
RDF knowledge bases. Existing approaches, however, perform poorly on
data cubes because of their specific structure. Our contribution is to de-
sign and implement the first Question Answering system on statistical
Linked Data, built upon a previously published algorithm outline. Ad-
ditionally, we kick-start this new research sub-field by creating a bench-
mark which will be added to the QALD challenge in 2016. The evaluation
of our system on the benchmark shows the general feasibility of the ap-
proach, but also highlights shortcomings and challenges which we discuss
in detail in order to provide a starting point for future work in the field.

1 Introduction

Statistical data is immensely valuable as it influences decisions in health care,
policy and finance, among others. The general public is putting a high value [16]
on open access to this information, which coincides with the open data movement
and which has lead to an increased availability of statistical government data in
initiatives like OpenSpending1 and World Bank Open Data2.

Consuming multidimensional numerical data requires specialized tools, how-
ever, which is alleviated by the RDF Data Cube vocabulary which provides
standardized access and context. A data cube (also OLAP cube or hypercube) is
a multidimensional array of values, which can be used to hold statistical data.
Each element of the array, that is each cell of the cube, is called an observa-
tion, which is identified by the values of the dimensions for this observation, and
which holds one or more measurements. Optionally, there are attributes which

1 http://openspending.org/
2 http://data.worldbank.org/



provide further context to the whole dataset or to single observations, such
as the currency of an amount of money. The RDF Data Cube Vocabulary [1]
allows expressing data cubes in RDF. Statistical Linked Data is available from
projects such as Eurostat—Linked Data3 and LinkedSpending [11] (a conversion
of OpenSpending). More generally, from 294 032 542 RDF entities processed by
LODStats4 in March 2015, 47 302 049 have at least one triple with the DataCube
class qb:Observation in object position which amounts to 16.08 % of all RDF
entities.

Formal query languages, like SPARQL, are the standard way of querying
RDF data but they require precise knowledge of the formal language and the
vocabulary and are thus only suitable for experts. Semantic Question Answering
systems provide a more intuitive access to Linked Data by accepting natural
language queries which are then transformed into formal ones. Existing sys-
tems perform poorly on statistical data however (see Section 4), because of the
different structure of the underlying data. Our contribution is to design and im-
plement the first Question Answering system on statistical Linked Data, built
upon a previously published algorithm outline. Additionally, we kick-start this
new research sub-field by creating a benchmark, based on a question corpus com-
piled in previous work, which will be added to the QALD challenge in 2016. The
evaluation of our system on the benchmark shows the general feasibility of the
approach, but also highlights shortcomings and challenges which we discuss in
detail in order to provide a starting point for future work in the field. Combined
with speech recognition technology, this has the potential to simplify access of
complex multi-dimensional data even on small mobile devices.

One of the reasons why standard Question Answering methods cannot be
successfully applied is that answers need to be derived from statistical obser-
vations, which can have many dimensions and whose values are meaningless
without the proper context and further processing, such as aggregate functions.
For example, in traditional SQA, users typically ask about entities with certain
properties, e.g. ”Who is the wife of Barack Obama?”. On statistical data, on
the other hand, users typically ask about measurement values such as budgets
for a certain purpose or about entities with certain values or value ranges, such
as ”Which were the top 10 funded research institutions in Europe in 2013?”.
This motivated previous work [10], where we compiled statistical user questions
as a statistical question corpus used to analyse commonly used phrases and the
information they represent.

In this article, we make the following core contributions:

– To our knowledge, with Tree-Based Cube Question Answering (TCQA) we
designed the first Question Answering algorithm for statistical RDF data.

– An intelligent and flexible recursive parse tree matching technique which is
particular suitable for typical questions asked against statistical datasets.

– We provide a benchmark consisting of 100 questions significantly extending
a survey presented in previous work.

3 http://eurostat.linked-statistics.org/
4 http://lodstats.aksw.org



– We provide first results and a discussion of challenges to open up statistical
RDF Question Answering as a new research field.

Section 2 shows existing SQA approaches and their workflow and differenti-
ates, which of their parts can be reused and which ones have to be adapted for
statistical data. Section 3 explains requirements, design decisions and structure
of the TCQA algorithm. Section 4 evaluates and discusses the performance of
the TCQA algorithm on a benchmark created out of the question corpus. Sec-
tion 5 concludes with our plan to extend the corpus and implement as well as
evaluate the algorithm presented here.

2 Related Work

To the best of our knowledge, only our own previous work addresses Question
Answering on statistical Linked Data.5 Question Answering on Linked Data
however is an active area of research with numerous publications, of which we
can only list a small selection. There are several different benchmark competi-
tions which help evaluate and compare the multitude of QA approaches such
as the general QALD [5] challenges or the specialized BioASQ [22] competition
for biomedical data. Question Answering and search in general is even more
established, as shown by specialized annual conferences, such as the Text RE-
trieval Conference (TREC) and the Conference and Labs of the Evaluation Fo-
rum (CLEF).

Wolfram—Alpha is a natural language interface that queries several struc-
tured sources using the computational platform Mathematica [24]. It can an-
swer questions such as ”What is the fifty-second smallest country by GDP per
capita?”, ”What is the average country population?” or ”What was the pop-
ulation in Germany in 1950?”. However it does not support Linked Data and
neither the source code nor the algorithm is published.

The Clinical Narrative Temporal Relation Ontology (CNTRO) is used in a
system [21] that incorporates the time dimension in answering clinical ques-
tions. The ontology is based on Allen’s Interval Based Temporal Logic [2] but
it represents time points as well. The framework includes a reasoner that can
infer additional time information, for example based on the transitivity of the
before and after relations. The time dimension is used to identify the direction
of possible causality between different events.

A hybrid geo-spatial approach [25] incorporates the spatial dimension by
enriching semantic data with spatial relationships such as crossing, inclusion
and nearness.

Intui2 [7] includes an algorithm that, similar to our TCQA, generates query
templates recursively. Intui2 uses DBpedia and is based on synfragments, which
are minimal parse subtrees of a question that refer to an RDF triple or RDF

5 Seemingly similar, but technically different, some approaches, such as the massively
parallel IBM Watson [15], use statistical methods instead of statistical data to ad-
dresses problems such as named-entity recognition and word-sense disambiguation.



query. The synfragments are combined in an order based on syntactic and se-
mantic characteristics in order to create the final query.

Other approaches for querying Linked Data include facetted browsing ap-
proaches such as Broccoli [4] and Facete [20], which allow intuitive navigation
from a certain starting resource of list of resources using property values.

There are a number of surveys on Question Answering. [6] present a data-
driven problem analysis of Question Answering on the Geobase dataset. The au-
thors identify eleven challenges that Question Answering has to solve. They are
called: question types, language “light”6, lexical ambiguities, syntactic ambigui-
ties, scope ambiguities, spatial prepositions, adjective modifiers and superlatives,
aggregation, comparison and negation operators, non-compositionality, and out
of scope7. [12] give a detailed analysis of the system of the participants of the
first and second QALD challenge. The authors give a short introduction to all
systems which participated in this challenge and finally describe the occurring
problems and solution strategies. A wide overview for Question Answering sys-
tems in the context of the Semantic Web is presented in [13]. After defining the
goals and dimensions of Question Answering and presenting some related and
historic work of Question Answering, the authors concentrate on ontology-based
Question Answering. Before concluding the survey, the authors summarize the
achievements of Question Answering so far and the challenges that are still open.
Another related survey from 2012, [8], gives a broader overview of the challenges
involved in constructing effective query mechanisms for Web-scale data. The au-
thors analyze different approaches, such as PowerAqua and Treo, for five different
challenges: usability, query expressivity, vocabulary-level semantic matching, en-
tity recognition and improvement of semantic tractability. The same is done for
architectural elements such as user interaction and interfaces and the impact
on these challenges is reported. BioASQ [22] is a benchmark challenge which
ran until October 2014 and consists of semantic indexing as well as an Semantic
Question Answering part on biomedical data. In the Semantic Question Answer-
ing part, systems are expected to be hybrids, returning matching triples as well
as text snippets but partial evaluation (text or triples only) is possible as well.
Similar to [13], [3] gives a broad overview of domain specific Question Answering
systems for biomedicine.

3 TCQA Algorithm

Question Answering on generic RDF data presents different types of complexity
than QA on RDF Data Cubes. The former task presents complex relationships
between entities but the number of relationships expressed in a single query and
thus the structure of the query is usually low. This motivates approaches that
focus on bridging the gap between properties and relationship references, such

6 semantically weak constructions
7 cannot be answered as the information required is not contained in the knowledge

base
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Fig. 1. The TCQA pipeline.

as the BOA framework [9]. Additionally, predefined query patterns are effective
in covering a wide range of query types.

Queries that can be answered on RDF Data Cubes necessarily represent the
simpler relationships that are possible in the RDF Data Cube Model. However,
RDCs contain a large number of component properties (dimensions, measures
and attributes), see Figure 3. Thus, queries usually have a complex structure
with references to each component property that is to be restricted.

In order to be able to handle those complex structures, the TCQA algorithm
(see Figure 1) is designed in a recursive manner, similar to Intui2 [7].

3.1 Initialization and Preprocessing

First, the index and the data cube cache are filled using the given knowledge
base. Next, the question is preprocessed using the Detectors, which match spe-
cific keyphrases and are used to match constructs such as aggregates, intervals
(“more than 100000 $”) and top/bottom-n (“the 5 highest amounts”). Explicit
references to aggregates are detected using a manually created mapping based
on the question corpus. In the example (Figure 2), there is no explicit aggregate
reference, so that the aggregate detector defaults to the sum aggregate. Then, a
parse tree is generated using a syntactic tree parse. This tree is then traversed for
node matching in pre-order (root-left-right), so that longer phrases have prece-
dence before shorter ones. For example, the phrase “United States of America”
can be fully matched to the country or partially matched to the continent, but
the full match is assumed to have a higher probability of being the intended
reference.

3.2 Node Matching

Each node gets assigned an empty Template Fragment and the phrase which is
the part of the question with that node as its root. The phrase is then checked
by the scorer of each component property, which depends on the property range,
generating a Match Result m = (N,V ), as defined in Table 1.

Each component property, that is dimension, attribute or measure, of the
data cube has an associated Scorer, which returns a set of possible references
to one if its labels or values along with a score between 0 and 1. For example,
the word “2007” is treated as a label (of the property) when applied to the
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Fig. 2. Parse tree for the question “How much did the Philippines receive in the year
of 2007?” along with simplified potential component property references and values.

N scored component property (name) references N ⊆ P × [0, 1]

V scored comp. property value references V ⊆ P × L ∪ U × [0, 1]

P component properties

L literals

U uris
Table 1. Definition of a Match Result

Scorer of an object property, as a time interval8 when applied to a property
with range xsd:date and as a single year when applied to xsd:year. Temporal
intervals in the question match enclosing intervals in observations but not the
other way around. For example, the phrase “transactions in 2014” matches the
observation date of 2014-02-03, but “transactions on 2014-02-03” does not match
observations with the year 2014.

For labels and string values, we combine two Apache Lucene indexes with: (1)
a standard vector space model with tokenization and stemming to handle word
transpositions and different word forms and (2) Levenshtein-Automatas9 [17]
with a maximum edit distance of 2 to handle typing errors. As the indexes

8 inspired by Allen’s Interval Based Temporal Logic [2]
9 Apache Lucene FuzzyQuery



handle different cases, a candidate gets included in a Template Fragment when
found by any single index. The vector space model of the standard Lucene index
is more suitable for longer documents, however, and shows some unfavourable
properties when used for matching of RDF resources, such as returning hits for
partial matches with incomparable score values. We partially mitigate this by
discarding all matches with more than twice the length of a phrase.

3.3 Template Fragment Combination

If a node cannot be matched or it has an unmatched phrase, its children are
matched and then combined. If a node is matched, its children are skipped as
the phrase they represent is a subphrase from the matched phrase. If a node has
children with non-empty results from the node matching, those are combined
into its own Template Fragment. The results of each matching on a subtree
is both a set of scored component properties10 and a set of scored component
property values11. While property values also include the property itself, using
them immediately is problematic because, contrary to Question Answering on
non-numerical data, there is a high amount of ambiguity in statistical values,
even for exact matches. In the example in Figure 2, the value “2007” matches
several component properties with the maximum score as it is for each of them
an exact match. Because of this, those references are not directly included in
the restrictions of the Template Fragments. Template Fragments are filters on
the cells of the cube, in this case a subtype of restriction: the value restriction
besides interval and other restrictions. They are defined is a tuple (N,V,R),
with N and V defined as in Table 1 and R ⊆ P × 2V is a set of restrictions. The
combination function c(m1,m2) creates a Template Fragment out of two Match
Results in the following way: (1) N and V are unions of N and V from m1

and m2 minus property references and values in the restriction and (2) R is the
combination of property reference and fitting property value between both match
results with highest score product. That is, for each component property, a pair
of the highest scored name and value reference to that property is searched. If
it exists, and both references are not from the same phrase, a new restriction
is formed, that restricts that property to a referenced value. In the running
example in Figure 2, the name reference (:year,1) is combined with the value
reference (:year,2007,1) to form the value restriction (:year,2007). Both match
results are then removed from their fragments. After this process has been done
for each property, the leftover references are added to the nodes own fragment.
Combining in this order has the advantage of combining close elements in the
tree first which are assumed to have a higher chance of being related.

In the parse tree, some references are not represented exactly by a phrase of
a subtree, but by parts from different subtrees. This impedes the combination
and recognition of those references. We salvage some of these cases by joining
the non-matched parts of a phrase of a node and creating a pseudo-node out of
the joined text.

10 such as (:year,1) in Figure 2
11 such as (target-area,“Malaysia, Philippines”,0.95) in Figure 2



Measure Property :aid-amount

Restrictions (:year,2007),(:recipient-country,:ph)

Aggregate sum

SPARQL Query

s e l e c t SUM( xsd : decimal (? v1 ) )
{

? obs a qb : Observation .
? obs : r e c i p i e n t−country : ph .
? obs qb : dataSet : f i n l and−a id .
? obs : re fYear ?v0 .
f i l t e r ( year (? v0 ) =2007) .
? obs : f i n l and−aid−amount ?v1 .

}

Table 2. Query Template and SPARQL query resulting from the combination in the
root step of Figure 2.

3.4 SPARQL query generation

When this recursive process reaches the root node, the Template Fragment that
results from the successive combination up to that point is transformed into
a template, whereby all leftover value references whose property has not been
referenced yet over a certain score threshold are transformed into additional re-
strictions. All other name and value references are discarded and the restrictions
as well as the aggreagate, if available, are used to construct a SPARQL query
which forms the output of the process. If the resulting template does not include
a measure, the default measure of the dataset is used. In the example in Figure 2,
(:recipient-country,:ph) is such a leftover value and no measure is given, which
results in the template and SPARQL query shown in Table 2.

The algorithm implementation is publicly available under an open license at
https://github.com/AKSW/cubeqa.

4 Evaluation

4.1 Research Questions

The goal of the evaluation was to obtain answers to the following research ques-
tions:

Q1: Is TCQA powerful enough to be practically useful on challenging statistical
questions?

Q2: Is there a tendency towards either high precision or recall?

Q3: How do other QA systems perform when applied to statistical data?

Q4: What types of errors occur? How frequently are they? What are the reasons
for those?



4.2 Experimental Setup / Benchmark

question word expected answer type f

what any 28

how much quantity (uncountable) 26

which equivalent to ”what” 17

how many quantity (countable) 13

when time point or interval 10

is, do, . . . “yes” or “no” 4

where location or purpose 1

none (statement) any 1

total 100

Table 3. Frequency of question words in the benchmark.

As there was no existing benchmark for this task, we created a benchmark
based on the statistical question corpus compiled in previous work [10], in which
we collected questions from users. We used this basic corpus and significantly
extended it to 100 questions. While keeping a similar structure and question
word distribution (see Table 3), we adapted it to one specific dataset, which
details foreign aid from Finland over several years to different countries.12 The
dataset contains 4 dimensions, 16 measures, 11 attributes, 13 750 observations
and 467 367 triples. To stimulate future research and more elaborate approaches,
the benchmark contains difficult queries and provides several challenges. The
challenges include implied aggregations, intervals, implied or differently refer-
enced measures and numerical values which are contained in several component
properties, which are supported by the TCQA algorithm, as well as other chal-
lenges, such as questions requiring SPARQL subqueries, which are not supported.

Precision p and recall r are defined as follows, where G is the set of resources
given by the gold standard of the benchmark and O is the output of the algo-
rithm:

p =
|G| ∩ |O|
|O|

r =
|G| ∩ |O|
|G|

Results Of the 100 questions, 18 contain constructs that are not supported
by TCQA: 6 contained unions which result from logical operators, 8 require
subqueries and 4 are affirmative questions. Of the remaining 82 questions, TCQA
achieves an average precision of 0.286, an average recall of 0.195 and a macro
f-score of 0.232, see Table 4. Without manually created stopwords, the F-score

12 http://linkedspending.aksw.org/resource/properties/?r=http://

linkedspending.aksw.org/instance/finland-aid



deceases by 0.015 and the removal of the default measure further reduces this by
0.129. This shows that minimal manual adaption of the algorithm to a dataset
is necessary—primarily the selection of a default measure, which is often only
implicitly mentioned. More time-intensive customizations are not required to set
up the algorithm.

Algorithm Average
Precision

Average
Recall

Macro
F-Score

TCQA, default measure, custom
stopwords

0.286 0.195 0.232

TCQA, default measure, no custom
stopwords

0.267 0.183 0.217

TCQA, no default measure, no custom
stopwords

0.109 0.073 0.088

SINA 0.000 0.000 0.000

TBSL 0.000 0.000 0.000

OpenQA SINA/TBSL Combinator 0.000 0.000 0.000

Table 4. Benchmark performance of different TCQA configurations and the OpenQA
framework, indicated by average precision, average recall and macro f-score (harmonic
mean of average precision and average recall). All values are rounded to 3 decimal
places.

To evaluate the performance of existing approaches on statistical RDF data,
we used the OpenQA [14] framework, which runs and evaluates different algo-
rithms. However both available algorithms, SINA [18] and TBSL [23] as well
as combinations of their components, could not answer a single question of the
benchmark. This is mainly due to the complexity of the questions in the bench-
mark and the previously described different nature of the questions. We believe
that despite the low F-score value, TCQA will be a strong baseline in this new
research field. In the future work section, we outline how we believe further im-
provements can be made and want to achieve community wide engagement on
those advances via QALD.

Running the 100 benchmark questions took 46 seconds (averaged over three
different runs with very low standard deviation) on an Intel Core i5-3230M CPU
@ 2.60GHz with 8 GB RAM which hosted both the SPARQL endpoint and the
system implementation (the combined RAM usage was less than 600 MB).

4.3 Discussion

Table 5 categorizes the different errors that prevented TCQA from returning a
correct result to a benchmark question. The most common error is the structural
error, where a feature needed to successfully answer a question is either not
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supported or not correctly applied, for example “Which sectors have Paraguay
and the Central African Republic in common?”, where the concept of having
something in common has to be recognized, and “Which countries received more
than they were committed?” where two entities have to be compared.

The second most common cause is ambiguity, which mainly results from the
high number of similar resources or equal numbers in the observation values.
Common approaches are to associate query templates with a score, so that the
user chooses amongst the top n (used by the TBSL algorithm [23]) and to prefer
candidate combinations that maximize textual and semantic relatedness between
the candidates [19]. Those approaches are not directly applicable to TCQA,
however, because of the locality based combination step. Instead, TCQA relys
on references consisting of a name reference as well as a value reference, as in
”the year 2008”, where the name-value pair with the maximal score product of
the name reference and the value reference is chosen, see Section 3. In case such a
two-part reference does not occur, it is alleviated by giving temporal dimensions
priority to others, so that for example ”2008” gets mapped to the year, if it exists,
rather than the a more improbable measurement value. In the question “How
much money Embassy of Finland contribute to Egyptian projects?”, the parser
does not isolate the phrase “Embassy of Finland”, so that instead “Finland”
gets found before the phrase gets constructed during the combination of left-
over fragments.

The distance between a surface form in a question and the labels of the con-
cept, to which the surface form refers, is called the lexical gap. It is caused, among
others, by different capitalization, typing errors, word transpositions (“extended
amount”, “amount extended”) and different word forms (“committed”, “com-



error cause occurrences description

structure 32 query structure not appropriately recognized

ambiguity 19 wrong choice amongst the index results

lexicalgap 11 correct resource not in index results

subquery 8 query requires subqueries, which are not supported

union 6 query requires unions, which are not supported

affirmative 4 yes/no question, which is not supported

recalculation 3 query requires application of function on result

no error 17

total errors 83

Table 5. Categorization of errors from the different benchmark questions (at most
one error per question), including the categories automatically excluded before the
evaluation.

mitments”). All of those, except typing errors, occur in the benchmark. As these
mentioned causes occur in document retrieval and Web search as well, full text
indexes have been developed that robustly handle those problems. We adopt
two Apache Lucene indexes as described in Section 3. The previous example
also shows the limitations of the hybrid index to overcome the lexical gap, as
“Egyptian” is not mapped to “Egypt” because the stemmer transform it and
the edit distance is too large for the fuzzy index as well. Sometimes a concept is
implicitly required but there is no explicit reference at all, for example in “How
much does Uruguay receive”, benchmark question 1313. Implicit references are
part of future work (see Section 5) and include aggregates, as most benchmark
questions (58 of 100) require summation of all selected values. Thus, summation
is the aggregation method selected as default. Another issue with the lexical gap
is that a measurement can be referenced using a quantity reference (“amount”),
a unit (“How many dollars are given”), or a the type (“aid”), of which only the
first one guarantees a match. TCQA matches the range of a property as well as
a its label. As this problem mainly occurs on measures, and our query model re-
quires the use of a least one measure, our fallback is the specification of a default
measure for each dataset. Figure 3 shows that most datasets of the LinkedSpend-
ing dataset only have one measure, where the fallback cannot misidentify. The
RDF Data Cube vocabulary provides sdmx-attribute:unitMeasure to specify
units of measurement, but it does not support multiple measures so that the
fallback has the same effect. In case of future vocabulary specification updates,
we plan to integrate measurement units into our approach.

Queries requiring subqueries and unions as well as affirmative questions are
the next common error causes which are not supported yet by TCQA.

13 https://github.com/AKSW/cubeqa/blob/master/benchmark/finland-aid.xml



Three questions require recalculation of its results, for example “How much
aid is received by Zambia on a single day?” where the queriable yearly aid has
to be divided by the average numbers of days in a year.

4.4 Research Question Summary

A brief summary of the initial research questions is as follows:

Q1: TCQA is not yet sufficiently powerful to be applied on challenging questions
over statistical data, but we believe it will be a strong baseline for future
research.

Q2: There is a tendency towards higher precision than recall, which however
can be adjusted via the NLP components in the pipeline.

Q3: Other systems, two of which we included in our evaluation, are not close
to being able to answer even one of the questions. This result is unsurpris-
ing: From a separate (yet unpublished) systematic survey of all QA systems
published from 2011 onwards, it is evident that none of the current systems
is suitable for this task.

Q4: The most common cause for problems is the incorrect detection of the query
structure, followed by ambiguity, the lexical gap and various unsupported
language features.

5 Conclusions and Future Work

To the best of our knowledge, we provide the first approach for Question Answer-
ing over statistical Linked Data. We described the underlying algorithm, created
a benchmark based on real data and provided results and a discussion on the
specifics of the field. In future work, we aim to advance along the following lines:

1. Integrating the Benchmark with the QALD Benchmark Challenge: In order
to stimulate and measure progress in this new research sub-field, the benchmark
developed for this work has already been approved for inclusion in the established
QALD Question Answering benchmark.

2. Integration into Generic Question Answering Algorithms: Generic Question
Answering algorithms can provide necessary world knowledge that is not avail-
able in the data cube, for example to determine which countries are part of Eu-
rope in the question “Which European countries receive the most development
aid?”. We will investigate how to seamlessly integrate statistical QA techniques
into generic QA algorithms, such as into the OpenQA [14] framework.



3. Cross Dataset Queries and Detailed User Study: While the 100-question cor-
pus we used for his work allows to draw basic conclusions about typical questions
and has the same size as other benchmarks in QALD, we plan to launch another
questionnaire with a significantly larger user base, in particular to unveil further
less frequent patterns in statistical queries and reduce the size of the confidence
interval for measurements against the corpus. Moreover, we plan to extend our
algorithm to cover the case of queries against a set of datasets (in contrast to
a single dataset), for which we envision two possible scenarios: 1.) The QA al-
gorithm needs to decide which dataset is most relevant for the question and
run the query against it. 2.) The QA algorithm needs to be capable to produce
queries against multiple datasets, i.e. joining statistical information on the fly.
This is particularily important in this field as statistical information of similar
type is frequently obtained from several independant sources with overlapping
but not identical schema use, e.g. different municipalities or countries publishing
E-Government information.

4. Improvements of the TCQA algorithm We identified the following approaches
for improvement of the TCQA algorithm

– Implement selection filters as logical formula of restrictions instead of flat
sets, including negations and unions.

– Support SPARQL subqueries to answer queries with nested information de-
pendencies.

– Detect implied references and implied aggregation.
– Add inference over the time dimension based on CNTRO [21].
– Support languages other than English by integrating a language detection

component as well as fitting parsers and indexes.
– Incorporate measurement units if RDF Data Cube vocabulary adds support

for them for multiple measures. For elaborate phrase patterns, like “How
many people live in” for “population”, there are pattern libraries like BOA [9]
which need to be adapted to statistical data by retraining on a comprehensive
statistical question corpus.

Overall, we believe to have opened an interesting field of research and prac-
tise, which will increase in importance due to the rise of both the volume of
statistical data and the usage of Question Answering approaches in everyday
life.
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