
Databugger: A Test-Driven Framework for Debugging the
Web of Data

Dimitris Kontokostas
University of Leipzig

kontokostas@informatik.uni-leipzig.de

Patrick Westphal
University of Leipzig

pwestphal@informatik.uni-
leipzig.de

Sören Auer
University of Bonn and

Fraunhofer IAIS
auer@cs.uni-bonn.de

Sebastian Hellmann
University of Leipzig

hellmann@informatik.uni-leipzig.de

Jens Lehmann
University of Leipzig

lehmann@informatik.uni-
leipzig.de

Roland Cornelissen
Stichting Bibliotheek.nl

roland@metamatter.nl

ABSTRACT
Linked Open Data (LOD) comprises of an unprecedented
volume of structured data on the Web. However, these
datasets are of varying quality ranging from extensively cu-
rated datasets to crowd-sourced or extracted data of often
relatively low quality. We present Databugger, a framework
for test-driven quality assessment of Linked Data, which is
inspired by test-driven software development. Databugger
ensures a basic level of quality by accompanying vocabular-
ies, ontologies and knowledge bases with a number of test
cases. The formalization behind the tool employs SPARQL
query templates, which are instantiated into concrete quality
test queries. The test queries can be instantiated automati-
cally based on a vocabulary or manually based on the data
semantics. One of the main advantages of our approach is
that domain specific semantics can be encoded in the data
quality test cases, thus being able to discover data quality
problems beyond conventional quality heuristics.

Categories and Subject Descriptors
H.2.0 [DATABASE MANAGEMENT]: General—Secu-
rity, integrity, and protection; D.2.5 [Software Engineer-
ing]: Testing and Debugging —Testing tools, Debugging
aids

Keywords
Data Quality, Web of Data, Linked Data, SPARQL

1. INTRODUCTION
Linked Open Data (LOD) comprises an unprecedented

volume of structured data published on the Web. However,
these datasets are of varying quality ranging from exten-
sively curated datasets to crowd-sourced and even extracted

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
todo: http://DOI string/url.

data of relatively low quality. Data quality is not an absolute
measure, but assesses fitness for use [4]. Consequently, one of
the main challenges regarding the wider deployment and use
of semantic technologies on the Web is the assessment and
ensuring of the quality of a certain possibly, evolving dataset
for a particular use case. There have been few approaches
for assessing Linked Data quality. However, these were ma-
jorly methodologies, which require (1) a large amount of
manual configuration and interaction [1] or (2) automated,
reasoning based methods [3].

In this demo, we present Databugger, a framework for
test-driven Linked Data quality assessment, which is in-
spired by test-driven software development. A key principle
of test-driven software development is to start the develop-
ment with the implementation of automated test-methods
before the actual functionality is implemented. Compared
to software source code testing, where test cases have to
be implemented largely manually or with limited program-
matic support, the situation for Linked Data quality testing
is slightly more advantageous. On the Data Web we have a
unified data model – RDF – which is the basis for both, data
and ontologies. Databugger exploits the RDF data model by
devising a pattern-based approach for the data quality tests
of knowledge bases. Ontologies, vocabularies and knowledge
bases can be accompanied by a number of test cases, which
help to ensure a basic level of quality. This is achieved by
employing SPARQL query templates, which are instantiated
into concrete quality test SPARQL queries. We provide a
comprehensive library of quality test patterns, which can be
instantiated for rapid development of more test cases. Once
test cases are defined for a certain vocabulary, they can be
applied to all datasets reusing elements of this vocabulary.
Test cases can be re-executed whenever the data is altered.
Due to the modularity of the approach, where test cases are
bound to certain vocabulary elements, test cases for newly
emerging datasets, which reuse existing vocabularies can be
easily derived.

In this demo, we will showcase how Databugger can be
used for Linked Data quality assurance. In particular, we
describe the Test-Driven Quality Evaluation methodology
(Section 2). We outline the architecture and extensibility of
Databugger (Section 3) and provide an overview of use case
evaluations with five different datasets (Section 4). We con-

Figure 1: Flowchart showing the test-driven data quality methodology. The left part displays the input
sources of our pattern library. In the middle part the different ways of pattern instantiation are shown which
lead to the Data Quality Test Cases on the right.

clude and point to possible future extensions of Databugger
(Section 5).

2. TEST-DRIVEN QUALITY ASSESS-
MENT IN A NUTSHELL

In this section we introduce basic notions of our methodol-
ogy and describe the workflow implemented in the Databug-
ger tool. A thorough description of test-driven quality as-
sessment methodology can be found in [5]1

Data Quality Test Pattern (DQTP). A data qual-
ity test pattern is a SPARQL query template with variable
placeholders. Possible types of the pattern variables are
IRIs, literals, operators, datatype values (e.g. integers) and
regular expressions. Using %%v%% as syntax for placeholders,
an example DQTP is:

1 SELECT ?s WHERE { ?s %%P1%% ?v1. ?s %%P2%% ?v2 .
2 FILTER (?v1 %%OP%% ?v2) }

This DQTP can be used for testing whether a value com-
parison of two properties P1 and P2 holds with respect to
an operator OP . DQTPs represent abstract patterns, which
can be further refined into concrete data quality test cases
using test pattern bindings.

Test Pattern Binding. Test pattern bindings are valid
DQTP variable replacements.

Data Quality Test Case. Applying a pattern binding
to a DQTP results in an executable SPARQL query. Each
result of the query is considered to be a violation of a test
case. A test case may have three different results: success
(empty result), violation (results are returned) and timeout
(test is marked for further inspection). An example test
pattern binding and resulting data quality test case is2:

1 P1 => dbo:birthDate | SELECT ?s WHERE {
2 P2 => dbo:deathDate | ?s dbo:birthDate ?v1.
3 OP => > | ?s dbo:deathDate ?v2.
4 | FILTER (?v1 > ?v2) }

Test Auto Generator (TAG). A Test Auto Generator
reuses the RDFS and OWL modelling of a knowledge base to
1
http://svn.aksw.org/papers/2014/WWW_Databugger/public.pdf

2We use http://prefix.cc to resolve all name spaces and pre-
fixes. A full list can be found at http://prefix.cc/popular/all

verify data quality. In particular, a TAG, based on a DQTP,
takes a schema as input and returns test cases. TAGs consist
of a detection and an execution part. The detection part is
a query against a schema and for every result of a detection
query, a test case is instantiated from the respective pattern,
for instance:

1 # TAG | # TQDP
2 SELECT DISTINCT ?P1 ?P2 | SELECT DISTINCT
3 WHERE { | ?s WHERE {
4 ?P1 owl:propertyDisjointWith ?P2.| ?s %%P1%% ?v.
5 } | ?s %%P2%% ?v.}

Additionally, we devise the notion of RDF test case cover-
age based on a combination of six individual coverage met-
rics (four for properties and two for classes) [5].

The test-driven data quality methodology is illustrated
in Figure 1. As shown in the figure, there are two major
sources for the creation of tests. One source is stakeholder
feedback from everyone involved in the usage of a dataset
and the other source is the already existing RDFS/OWL schema
of a dataset. Based on this, there are several ways to create
tests:

1. Manually create test cases: Test cases specific to a cer-
tain dataset or schema can be written manually by an
engineer. This can be guided choosing suitable DQTPs
of our proposed pattern library. Tests that refer to the
schema of a common vocabulary can become part of a
central library to facilitate later reuse.

2. Reusing tests based on common vocabularies: Natu-
rally, a major goal in the Semantic Web is to reuse
existing vocabularies instead of creating new ones. We
detect the used vocabularies in a dataset, which allows
to reuse tests from a library, currently delivered with
the Databugger tool.

3. Using RDFS/OWL constraints directly: As previously ex-
plained, tests can be automatically created via TAGs
in this case.

4. Enriching the RDFS/OWL constraints: Since many
datasets provide only limited schema information, we
perform automatic schema enrichment as recently re-
searched in [2]. Those schema enrichment methods can

http://svn.aksw.org/papers/2014/WWW_Databugger/public.pdf
http://prefix.cc
http://prefix.cc/popular/all

Figure 2: Screenshot of the Databugger web interface. In the upper left section the user configures the
SPARQL Endpoint, the graph and the schemas she wants to test her data with. In the lower left section,
test cases are automatically generated by parsing the schemas. Manual tests predefined for a schema are also
loaded. In the right section Databugger starts running the tests and displays test results to the user.

take an RDF dataset or a SPARQL endpoint as input
and automatically suggest schema axioms with a cer-
tain confidence value by analysing the dataset. In our
methodology, this is used to create further tests via
TAGs.

3. TOOL OVERVIEW, ARCHITECTURE
AND EXTENSIBILITY

Databugger is a tool built to showcase the test-driven qual-
ity assessment methodology. The tool is released as open
source under the Apache License and provides both, a com-
mand line interface (CLI) and a web interface (cf. Fig-
ure 2)3,4. A simple CLI test configuration can be generated
with:

1 $ databugger -d <dataset -uri > -e <endpoint -uri >
2 -g <graph1|graph2 |...>
3 -s <schema -prefix1 ,schema -prefix2 ,...>

Once the user starts a test configuration, the framework
dereferences and reads the schemas. For all the provided
schemas, Databugger generates automatic test cases using
TAGs and loads any existing manual test cases for the
schemas or the dataset. All the test cases are then executed
against the SPARQL endpoint. The test results are both
displayed on the screen and stored in RDF. The web inter-
face allows the user to generate the same test configuration
from a more interactive interface (cf. Figure 2).

The DQTPs5, the manual and auto-generated test cases6,
the TAGs7 and the test results are modeled under the

3
http://databugger.aksw.org

4A screencast of the tool is available at http://youtu.be/

3g9R3P1kwdw
5
http://databugger.aksw.org/data/patterns#

6
http://databugger.aksw.org/data/tests#

7
http://databugger.aksw.org/data/generators#

Figure 3: Then main components of the core
Databugger library as a UML diagram. The dia-
gram was generated with the Intellij IDEA program.

Databugger ontology8. The input and output of the tool
is entirely in RDF which makes it highly configurable. One
can read the input (patterns, TAGs and test cases) from
the file system as RDF files, dereference then from a remote
location or retrieve them from a SPARQL endpoint. Con-
crete test cases are equipped with persistent identifiers to
facilitate test tracking over time. Our pattern library uses
SPARQL1.1 and property paths9 for properly checking tran-
sitive violations (e.g. rdfs:domain and rdfs:range).

Databugger was built with Java and the Jena framework.
A UML diagram of the core library is depicted in Figure 3.
The main components of the Databugger Library are the
Source, Pattern, TestAutoGenerator and UnitTest. A Source
represents an arbitrary RDF source uniquely identified by a
URI. Concrete Source implementations are:

8
http://databugger.aksw.org/ns/core#

9
http://www.w3.org/TR/sparql11-property-paths/

http://databugger.aksw.org
http://youtu.be/3g9R3P1kwdw
http://youtu.be/3g9R3P1kwdw
http://databugger.aksw.org/data/patterns#
http://databugger.aksw.org/data/tests#
http://databugger.aksw.org/data/generators#
http://databugger.aksw.org/ns/core#
http://www.w3.org/TR/sparql11-property-paths/

Dataset Triples Subjects Tests Pass Fail TO Errors ManEr EnrEr E/R
dbpedia.org 817,467,330 24,922,670 6,064 4,288 1.860 55 63,644,169 5,224,298 249,857 2.55
nl.dbpedia.org 74,790,253 4,831,594 5,173 4,149 812 73 5,375,671 211,604 15,041 1.11
linkedgeodata.org 274,690,851 51,918,417 634 545 86 3 57,693,912 133,140 1 1.11
datos.bne.es 60,017,091 7,470,044 2,473 2,376 89 8 27,943,993 25 537 3.74
id.loc.gov 436,126,273 53,072,042 536 499 28 9 9,392,909 49 3,663 0.18

Table 1: Evaluation overview for the five tested datasets. For every dataset we display the total number of
triples and the distinct number of subjects. We mention the total number of tests that run on each dataset,
how many tests passed, failed and did timeout (TO). Finally we show the total number of errors, as well as
the total number of errors that occurred from manual (ManEr) and enriched (EnrEr) tests. The last column
shows the average errors per distinct subject.

• SchemaSource: a schema, a vocabulary or an ontology
in RDF, e.g. skos. The framework can automatically
dereference a schema from a URI, a file location or
a prefix (e.g. foaf). For prefix resolution we query
the LOV SPARQL endpoint10 to get a dereferenceable
URI. Using LOV we provide easy test access to com-
monly used vocabularies.

• EnrichedSchemaSource: a semi-automatically enriched
schema as explained in Section 2.

• DatasetSource: an RDF dataset accessible via a
SPARQL endpoint, e.g. DBpedia11. A subset of the
dataset can be selected by providing a list of Named
Graphs. RDF dump datasets will be supported in the
following releases of Databugger.

The Pattern component holds a DQTP and UnitTests
are instantiations of Patterns generated by binding a pat-
tern placeholder to valid replacements. According to our
methodology, a UnitTest can be created either manually or
automatically. The automatic UnitTest generation is per-
formed by the TestAutoGenerator (TAG) component. Each
TAG is based on a Pattern and automatically instantiates
test cases (UnitTests) for an input schema.

The TestGeneratorExecutor component takes as input a
dataset and a list of schemas, for each schema a) auto-
matically generating test cases and b) loading any existing
manually defined test cases. Additionally, any pre-defined
test cases for the dataset are loaded. The automatically
generated test cases are cached locally for future reference.
The output of this component is passed to the TestExecutor
component which executes the test cases against a Dataset-
Source. The TestCoverageEvaluator is an optional step that
calculates the test coverage of a test case set against a
dataset. However, this step requires precalculated property
and class statistics of the dataset. Future versions of the
library will be able to autogenerate these statistics.

4. TEST RESULTS
To showcase the re-usability of our automatically and

manually generated test cases, Databugger was run against
the following five datasets for evaluation: The English12

and Dutch13 DBpedia, LinkedGeoData14, id.loc.gov15 and
10

http://lov.okfn.org
11

http://dbpedia.org
12

http://dbpedia.org (version 3.9)
13

http://nl.dbpedia.org (live version, accessed on 05/10)
14

http://downloads.linkedgeodata.org/releases/2013-08-14/
15

http://id.loc.gov/download/ (accessed on 05/10/2013)

datos.bne.es16. An overview of the dataset assessment is
provided in Table 1. A detailed description of the evalua-
tion results can be found in [5]. Additionally, by running the
TestGeneratorExecutor component against all the registered
Linked Open Vocabularies (LOV) we managed to generate
a total of 32,293 unique reusable test cases for 297 common
vocabularies.17

5. CONCLUSIONS AND FUTURE WORK
In this paper, we described Databugger, a framework for

test-driven Linked Data quality assessment. We introduced
the methodology behind Databugger and described in de-
tail the architecture, usability and extensibility of the tool.
Additionally we provided an evaluation overview on five dif-
ferent datasets and a library of 32,293 unique test cases for
297 common vocabularies. In future versions of the tool, we
plan to further enrich our pattern library and increase the
Test Auto Generators for full RDFS and OWL coverage. Addi-
tionally we plan to support testing of arbitrary RDF dumps
and fully automated test-coverage calculation. Finally we
will investigate the need of a RESTfull testing service as
well as a testing server for streaming RDF sources.

6. REFERENCES
[1] C. Bizer and R. Cyganiak. Quality-driven information

filtering using the WIQA policy framework. Web
Semantics, 7(1):1 – 10, Jan 2009.

[2] L. Bühmann and J. Lehmann. Universal OWL axiom
enrichment for large knowledge bases. In Proceedings of
EKAW 2012, pages 57–71. Springer, 2012.

[3] C. Guéret, P. T. Groth, C. Stadler, and J. Lehmann.
Assessing linked data mappings using network
measures. In Proceedings of the 9th Extended Semantic
Web Conference, volume 7295 of Lecture Notes in
Computer Science, pages 87–102. Springer, 2012.

[4] J. M. Juran. Quality Control Handbook. McGraw-Hill,
4th edition, August 1988.

[5] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann,
J. Lehmann, and R. Cornelissen. Test-driven evaluation
of linked data quality. In WWW, 2014 (to appear).

16
http://datos.bne.es/datadumps/, (accessed on 05/10/2013)

17
https://github.com/AKSW/Databugger/tree/master/archive/WWW_2014

http://lov.okfn.org
http://dbpedia.org
http://dbpedia.org
http://nl.dbpedia.org
http://downloads.linkedgeodata.org/releases/2013-08-14/
http://id.loc.gov/download/
http://datos.bne.es/datadumps/
https://github.com/AKSW/Databugger/tree/master/archive/WWW_2014

	Introduction
	Test-driven Quality Assessment in a Nutshell
	Tool Overview, Architecture and Extensibility
	Test Results
	Conclusions and Future Work
	References

