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ABSTRACT
Linked Open Data (LOD) comprises of an unprecedented
volume of structured data on the Web. However, these
datasets are of varying quality ranging from extensively cu-
rated datasets to crowd-sourced or extracted data of often
relatively low quality. We present a methodology for test-
driven quality assessment of Linked Data, which is inspired
by test-driven software development. We argue, that vocab-
ularies, ontologies and knowledge bases should be accompa-
nied by a number of test-cases, which help to ensure a basic
level of quality. We present a methodology for assessing the
quality of linked data resources, based on a formalization
of bad smells and data quality problems. Our formalization
employs SPARQL query templates, which are instantiated
into concrete quality test queries. Based on an extensive
survey, we compile a comprehensive library of data qual-
ity test patterns. We perform automatic test instantiation
based on schema constraints or semi-automatically enriched
schemata and allow the user to generate specific test instan-
tiations that are applicable to a schema or dataset. We pro-
vide an extensive evaluation of five LOD datasets, manual
test instantiation for five schemas and automatic test in-
stantiations for all available schemata registered with LOV.
One of the main advantages of our approach is that domain
specific semantics can be encoded in the data quality test
cases, thus being able to discover data quality problems be-
yond conventional quality heuristics.

Categories and Subject Descriptors
H.2.0 [DATABASE MANAGEMENT]: General—Secu-
rity, integrity, and protection; D.2.5 [Software Engineer-
ing]: Testing and Debugging —Testing tools, Debugging
aids

Keywords
Data Quality, Linked Data, DBpedia

1. INTRODUCTION
Linked Open Data (LOD) comprises an unprecedented vol-
ume of structured data published on the Web. However,
these datasets are of varying quality ranging from exten-
sively curated datasets to crowd-sourced and even extracted
data of relatively low quality. Data quality is not an absolute
measure, but assesses fitness for use. Consequently, one of
the main challenges regarding the wider deployment and use
of semantic technologies on the Web is the assessment and
ensuring of the quality of a certain possibly, evolving dataset
for a particular use case. There have been few approaches for
assessing Linked Data quality. However, these were majorly
methodologies, which require (1) a large amount of manual
configuration and interaction [2, 7, 16] or (2) automated,
reasoning based methods [9, 11]. While reasoning based
methods allow more automation, they are either limited to
very specific quality aspects (such as link quality [9]) or lack
scalability to the medium and large datasets being increas-
ingly published as Linked Data. In consequence, we observe
a shortage of practical quality assessment approaches for
Linked Data, which balance between a high degree of au-
tomation and scalability to datasets comprising billions of
triples.

In this article, we present a methodology for test-driven
Linked Data quality assessment, which is inspired by test-
driven software development. In software engineering, a test-
case can be defined as an input on which the program un-
der test is executed during testing and a test-set as a set
of test-cases for testing a program [23]. A basic metric in
software unit-testing is test adequacy, which measures the
completeness of the test-set. A key principle of test-driven
software development is to start the development with the
implementation of automated test-methods before the ac-
tual functionality is implemented.

Compared to software source code testing, where test cases
have to be implemented largely manually or with limited
programmatic support, the situation for Linked Data qual-
ity testing is slightly more advantageous. On the Data Web
we have a unified data model – RDF – which is the basis
for both, data and ontologies. In this work we exploit the
RDF data model by devising a pattern-based approach for
the data quality tests of RDF knowledge bases. We argue,
that ontologies, vocabularies and knowledge bases should be
accompanied by a number of test-cases, which help to ensure



a basic level of quality. We present a methodology for assess-
ing the quality of linked data resources, based on a formaliza-
tion of data quality integrity constraints. Our formalization
employs SPARQL query templates, which are instantiated
into concrete quality test queries. Based on an extensive
survey, we compile a comprehensive library of quality test
patterns, which can be instantiated for rapid development
of more test cases. We provide a method for automatic test
instantiation from these patterns for a particular ontology or
vocabulary schema. Furthermore, we support the automatic
derivation from OWL schema axioms. Since many schemata
of LOD datasets are not very expressive, our methodology
also includes semi-automatic schema enrichment. Concrete
test cases are equipped with persistent identifiers to facili-
tate test tracking over time. We devise the notion of RDF
test-case coverage based on a combination of six individual
coverage metrics (four for properties and two for classes).

As a result, the test coverage can be explicitly stated for a
certain dataset and potential users can thus obtain a more
realistic assessment of the quality they can expect. Since
the test-cases are related to certain parts of the knowledge
base (i.e. properties and classes), also the quality of partic-
ular fragments relevant for a certain use-case can be easily
assessed. Another benefit of test-driven data engineering
is support for data evolution. Once test-cases are defined
for a certain vocabulary, they can be applied to all datasets
reusing elements of this vocabulary. Test-cases can be re-
executed whenever the data is altered. Due to the modular-
ity of the approach, where test-cases are bound to certain
vocabulary elements, test-cases for newly emerging datasets,
which reuse existing vocabularies can be easily derived.

Our approach allows to perform an automatic test instan-
tiation based on schema constraints or semi-automatically
enriched schemata and allows users to generate specific tests
instantiations that are applicable for a schema or a dataset.
A main contribution of our work is an extensive and unprece-
dented quantitative evaluation involving (a) manual and au-
tomatic test instantiations for five large-scale LOD datasets
(two DBpedia editions, datos.bne.es, Library of Congress
authority data and LinkedGeoData) and (b) automatic test
instantiations for all available schemata registered with the
Linked Open Vocabularies (LOV)1 resulting in 32,293 total
unique tests for 297 of the LOV vocabularies. One of the
main advantages of our approach is that domain specific se-
mantics can be encoded in the data quality test cases, thus
being able to discover data quality problems beyond con-
ventional quality heuristics. Finally, our framework imple-
mentation is built upon the SPARQL 1.1 standard which
makes it applicable for any knowledge bases or triple store
implementation.

The remainder of the article is structured as follows: Sec-
tion 2 describes the methodology we followed to define Data
Quality Test Patterns. The elicitation of our pattern library
is described in Section 3. We instantiate, run and evaluate
the tests in Section 4 and Section 5, followed by a discussion
in Section 6. Section 7 elaborates on related work and we
conclude in Section 8.

1
http://lov.okfn.org/

2. TEST-DRIVEN DATA QUALITY
METHODOLOGY

We first introduce the basic notions in our methodology,
then describe its workflow and finally define test coverage
criteria analogous to unit tests in software engineering.

Basic Notions
Data Quality Test Pattern (DQTP). A data quality test
pattern is a tuple (V, S), where V is a set of typed pattern
variables and S is a SPARQL query template with placehold-
ers for the variables from V . Possible types of the pattern
variables are IRIs, literals, operators, datatype values (e.g.
integers) and regular expressions. With R(v) we denote the
value range for a pattern variable in v ∈ V , i.e. the set of
values by which the variable can be substituted, and with
R(V ) the union of all these sets, i.e. R(V ) =

⋃
v∈V R(v).

Ideally, DQTPs should be knowledge base and vocabulary
agnostic. Using %%v%% as syntax for placeholders, an exam-
ple DQTP is:

1 SELECT ?s WHERE { ?s %%P1%% ?v1 .
2 ?s %%P2%% ?v2 .
3 FILTER ( ?v1 %%OP%% ?v2 ) }

This DQTP can be used for testing whether a value com-
parison of two properties P1 and P2 holds with respect to
an operator OP . DQTPs represent abstract patterns, which
can be further refined into concrete data quality test cases
using test pattern bindings.

Test Pattern Binding. A test pattern binding is a specific
instantiation of a DQTP. It is a triple (σ, S,C) in which σ :
V → R(V ) is a mapping of variables to valid replacements,
S is a SPARQL query template and C ∈ {error, bad smell}
is used as classification of the error.

Data Quality Test Cases. Applying σ to S results in a
SPARQL query, which can then be executed. Each result of
the query is considered to be a violation of a unit test. An
example test pattern binding and resulting data quality test
case is2:

1 P1 => dbo:birthDate | SELECT ?s WHERE {
2 P2 => dbo:deathDate | ?s dbo:birthDate ?v1.
3 OP => > | ?s dbo:deathDate ?v2.
4 | FILTER ( ?v1 > ?v2 ) }

A test case has three different results: success (empty re-
sult), violation (results are returned) and timeout (test is
marked for further inspection).

Test Auto Generators (TAG). Many knowledge bases
use RDFS and OWL as modelling languages. While the core
of those languages aims at inferring new facts, a number
of constructs is also suitable for verifying data quality. In
previous work, tools like the Pellet Integrity Constraint
Validator [18] made use of this by viewing OWL axioms as
constraints and reporting violations of them. Those are then

2We use http://prefix.cc to resolve all name spaces and pre-
fixes. A full list can be found at http://prefix.cc/popular/all

http://lov.okfn.org/
http://prefix.cc
http://prefix.cc/popular/all


interpreted via integrity constraint semantics, which uses a
closed world assumption and a weaker form of the unique
names assumption in which two individuals are considered
to be different unless they are explicitly stated to be equal.
We pursue the same approach for re-using schema infor-
mation in our test framework. To achieve this, a test auto
generator (TAG) takes a schema as input and returns test
cases. We provide support for axioms such as rdfs:domain,
rdfs:range, owl:cardinality, owl:minCardinality,
owl:maxCardinality, owl:functionalProperty,
owl:disjointClass, owl:propertyDisjointWith,
owl:complementOf, owl:InverseFunctionalProperty,
owl:AsymmetricProperty and owl:IrreflexiveProperty.

Generators consist of a detection and an execution part. The
detection part is a query against a schema, for instance:

1 SELECT DISTINCT ?T1 ?T2 WHERE {
2 ?T1 owl:disjointWith ?T2 . }

For every result of a detection query, a test-case is instanti-
ated from the respective pattern, for instance:

1 SELECT DISTINCT ?s WHERE {
2 ?s rdf:type %%T1%% .
3 ?s rdf:type %%T2%% .}

Depending on the violation, there is not necessarily a one-to-
one mapping between a detection query and the generated
test cases. For the owl:cardinality constraint, for exam-
ple, we use three TAGs: a TAG for the case a cardinality
is 0, which checks whether the corresponding triple pattern
is instantiated and two generators for values greater than
0, one to ensure that the property exists (TYPRODEP)
and a second to validate the property occurrences (OWL-
CARD). Note that detection queries can be complex, al-
though it should be noted that our goal is not to provide
complete reasoning and constraint checking, but rather pro-
viding a lightweight mechanism verifying typical violations
efficiently.

Workflow
Our methodology is illustrated in Figure 1. As shown in
the figure, there are two major sources for creating tests.
One source is stakeholder feedback from everyone involved
in the usage of a dataset and the other source is the already
existing RDFS/OWL schema of a dataset. Based on this,
there are several ways in which tests can be created:

1. Using RDFS/OWL constraints directly: As previously
explained, tests can be automatically created via TAGs
in this case.

2. Enriching the RDFS/OWL constraints: Since many
datasets provide only limited schema information, we
perform automatic schema enrichment as recently re-
searched in [4, 3]. Those schema enrichment methods
can take an RDF/OWL dataset or a SPARQL end-
point as input and automatically suggest schema ax-
ioms with a certain confidence value by analysing the
dataset. In our methodology, this is used to create fur-
ther tests via TAGs. It should be noted that tests are
explicitly labelled, such that the engineer knows that
they are less reliable than manual tests.

3. Re-using tests based on common vocabularies: Natu-
rally, a major goal in the Semantic Web is to re-use
existing vocabularies instead of creating them from
scratch for each dataset. We detect the used vocab-
ularies in a dataset, which allows to re-use tests from
a test pattern library. The creation of that library is
described in the next section.

4. Instantiate existing DQTPs: The aim of DQTPs is to
be generic, such that they can be applied to differ-
ent datasets. While this requires a high initial effort
of compiling a pattern library, it is beneficial in the
long run, since they can be re-used. Instead of writing
SPARQL templates themselves, an engineer can select
and instantiate the correct DQTP. This does not nec-
essarily require SPARQL knowledge, but can also be
achieved via a textual description of a DQTP, exam-
ples and its intended usage.

5. Write own DQTPs: In some cases, test cases cannot be
generated by any of the automatic and semi-automatic
methods above and have to be written from scratch by
an engineer. Those DQTPs can then become part of
a central library to facilitate later re-use.

Test Coverage and Adequacy
In software engineering, a test-case can be defined as an
input on which the program under test is executed during
testing and a test-set as a set of test-cases for testing a
program [23]. A basic metric in software unit-testing is
Test Adequacy. According to [23], adequacy is a notion
that measures the completeness of the test-set. An Ade-
quacy Stopping Rule (ASR) is a related metric with a range
{true|false} that defines whether sufficient testing has been
done. Many attempts have been made to quantify test ad-
equacy with the main coverage criteria being: a) statement
coverage, b) branch coverage, c) path coverage and d) muta-
tion adequacy. It is hard to automate the creation of those
tests.

In RDF, instead of code, the testing subject is data that
is stored in triples and adheres to a schema. We define an
RDF test-case as a data constraint that involves one or more
triples and an RDF test-set as a set of test cases for testing
a dataset. As there exist no branches and paths in RDF, a
test adequacy metric can only be related to the selectivity
of the test-cases. We will subsequently consider coverage as
a composite of the following coverage criteria:
• Property domain coverage (dom): Identifies the ratio

of property occurrences, where a test-case is defined
for verifying domain restrictions of the property.
• Property range coverage (ran): Identifies the ratio of

property occurrences, where a test-case is defined for
verifying range restrictions of the property.
• Property dependency coverage (pdep): Identifies the

ratio of property occurrences, where a test-case is de-
fined for verifying dependencies with other properties.
• Property cardinality coverage (card): Identifies the ra-

tio of property occurrences, where a test-case is defined
for verifying the cardinality of the property.
• Class instance coverage (mem): Identifies the ratio of

classes with test-cases regarding class membership.
• Class dependency coverage (cdep): Identifies the ra-

tio of class occurrences for which test-cases verifying
relationships with other classes are defined.



Figure 1: Flowchart showing the test-driven data quality methodology. The left part displays the input
sources of our pattern library. In the middle part the different ways of pattern instantiation are shown which
lead to the Data Quality Test Cases on the right.

A certain property should also be considered to be covered,
if the absence of a particular constraint is explicitly stated.

The above criteria can be computed by coverage compu-
tation functions. Each coverage computation function f :
Q → 2E takes a SPARQL query q ∈ Q corresponding to
a test pattern binding as input and returns a set of enti-
ties. As an example, the function fdom for computing the
domain coverage returns the set of all properties p such that
the triple pattern (?s, p, ?o) occurs in q and there is at least
one other triple pattern using ?s in q. This can straight-
forwardly be extended to a function F : 2Q → 2E taking
a set of SPARQL queries as input and returning a set of
entities. F computes how many entities are covered by the
test queries. For properties, F can be further extended to
a function F ′ with F ′(QS,D) =

∑
p∈F (QS) pfreq(p) where

pfreq(p) is the frequency of a property p, i.e. the number
of occurrences of p divided by the number of occurrences of
all properties in D. The extension for classes is analogous.
This extension weights the entities by their frequency in the
dataset. We propose to employ occurrences, i.e. concrete
entity usages, instead of properties itself in order to reduce
the influence of rarely used properties on the coverage.

The other coverage criteria are defined as follows: Range
coverage fran is analogous to domain coverage. The prop-
erty dependency coverage fpdep of a query q returns all prop-
erties in q if there are at least two different properties and
an empty set otherwise. Property cardinality coverage fcard
of a query q returns the set of all properties p, such that
(?s, p, ?o) occurs in q along with GROUP BY ?s as well as HAV-
ING(count(?s) op n) aggregates (op is one of ≤, <,=, >,≥
and n a number) or, analogously, the same criteria for ?o
instead of ?s. Class instance coverage fmem of a query q
returns the set of all classes c such that (?s, rdf:type, c) oc-
curs in q. The class dependency coverage fcdep of a query
q returns all classes in q if there are at least two different
classes and an empty set otherwise.

In the above definition, please note that domain and range
restrictions are more general then verifying rdfs:domain

and rdfs:range as they cover all tests, which can be per-
formed via SPARQL on subject and objects of triples using
a particular property. Please note that many tests can be
expressed in OWL 2, in particular when using the Pellet in-
tegrity constraint semantics. For instance, custom datatypes
in OWL23 can be used for range checking of property values
using regular expressions. As noted above, we transparently
support the usage of OWL, but some tests are much easier to
implement in SPARQL and others, e.g. the SKOS restriction
”A resource has no more than one value of skos:prefLabel per
language tag.” cannot be checked in OWL at all, but are a
straightforward DQTP in our case (ONELANG in Table 1).

Formally, we can define RDF test-case coverage Cov of a set
of test queries QS with respect to a dataset D as follows:

Cov(QS,D) =
1

6
(F ′

dom(QS,D) + F ′
ran(QS,D)

+ F ′
pdep(QS,D) + F ′

card(QS,D)

+ F ′
mem(QS,D) + F ′

cdep(QS,D))

The coverage is a heuristic, which helps to assess whether the
defined test cases are sufficient for data quality assessment.

3. PATTERN ELICITATION AND CRE-
ATION

To start capturing patterns of real data errors we had a
closer look at the DBpedia being one of the bigger and best
interlinked datasets in the LOD cloud [15]. We performed
three different analyses which led to a comprehensive library
of test patterns summarized in Table 1:

1. Analysis of incidental error reports by the DBpedia
user community.

2. Analysis of error tracking behavior by Wikipedia edi-
tors.

3
http://www.w3.org/TR/owl2-primer/#Advanced_Use_of_Datatypes

http://www.w3.org/TR/owl2-primer/#Advanced_Use_of_Datatypes


3. Analysis of the ontology schema of the DBpedia OWL
ontology.

Community feedback. We thoroughly reviewed all the
DBpedia related mailing lists and QA websites, i.e. the DB-
pedia discussion4 and DBpedia developers5 lists, as well as
questions tagged with DBpedia on stackoverflow6 and Se-
mantic Web Answers7. We picked all the data quality re-
lated questions and tried to create SPARQL queries for re-
trieving the same erroneous data. Finally, we grouped sim-
ilar SPARQL queries together.

Wikipedia maintenance system. We reviewed the infor-
mation Wikipedia uses to ensure article quality and tried to
reuse it from DBpedia. Such information encompasses spe-
cial Categories and Templates used by seasoned Wikipedians
(e.g. admins and stewards) to administrate and tag errors
in the article space8. Based on the maintenance categories
and templates used, new patterns like the TRIPLE Pattern
and the PVT Pattern were derived. These patterns are also
applicable to other datasets, e.g. LinkedGeoData [19].

OWL ontology analysis. The main purpose of OWL is
to infer knowledge from existing schemata and data. While
it can also be used to check constraints, this can be difficult
in practice due to the Open World Assumption used and
the lack of the Unique Name Assumption. Therefore, in ad-
dition to standard OWL inference, it can also be useful to
convert OWL ontology axioms to SPARQL queries, which
check the constraints expressed by them. This is motivated
by research on the Pellet Integrity Constraint Validator9 us-
ing the same idea. Specifically, we analysed the ontology
and checked which existing constructs are applicable for con-
straint checking in DBpedia. We identified constructs such
as (inverse) functionality, cardinality, domain, and range of
properties as well as class disjointness as relevant and in-
cluded them in our pattern template library. The bindings
for those patterns can be created automatically from specific
OWL ontology axioms.

Pattern Library
Our Pattern Library consists of 17 DQTPs. Table 1 shows a
description of all patterns along with two example bindings.
In the following, we exemplarily illustrate two patterns in
detail and refer the reader to http://svn.aksw.org/papers/2014/

WWW_Databugger/public.pdf for a complete pattern description.

COMP Pattern . Depending on the property semantics,
there are cases where two different literal values must have
a specific ordering with respect to an operator. P1 and P2
are the datatype properties we need to compare and OP is
the comparison operator R(OP) = { <, <=, >, >=, =, != }.

1 SELECT ?s WHERE { ?s %%P1%% ?v1 .
2 ?s %%P2%% ?v2 .
3 FILTER ( ?v1 %%OP%% ?v2 ) }

4
https://lists.sourceforge.net/lists/listinfo/dbpedia-discussion

5
https://lists.sourceforge.net/lists/listinfo/dbpedia-developers

6
http://stackoverflow.com/questions/tagged/dbpedia

7
http://answers.semanticweb.com/tags/dbpedia/

8
http://en.wikipedia.org/wiki/Category:Wikipedia_maintenance

9
http://clarkparsia.com/pellet/icv/

Schema Tests Schema Tests
dicom 8,229 mo 605
dbo 5,713 tio 525
frbrer 2,166 uco 516
biopax 688 vvo 506
hdo 682 ceo 511

Table 2: Top 10 schemas with descending number
of automatically generated tests.

Example bindings: (a) dbo:deathDate before ‘<’
dbo:birthDate, (b) dbo:releaseDate after ‘>’
dbo:latestReleaseDate.

MATCH Pattern. Application logic or real world con-
straints may put restrictions on the form of a literal value.
P1 is the property we need to check against REGEX and
NOP can be a not operator (‘!’) or empty.

1 SELECT ?s WHERE { ?s %%P1%% ?value .
2 FILTER ( %%NOP%% regex(str(?value), %%REGEX%) ) }

Example bindings: (a) dbo:isbn format is different ’ !’ from
“ˆ([iIsSbBnN 0-9-])*$” (b) dbo:postCode format is different
‘!’ from “ˆ[0-9]{5}$”.

4. TEST GENERATION
To evaluate our methodology, we automatically generated
test cases for all available vocabularies in the LOV dataset.
Using the implemented TAGs, we managed to create 32,293
total unique reusable test cases for 297 LOV vocabularies10.
Table 2 displays the 10 schemas with the most associated
tests. For brevity we use the vocabulary prefixes as defined
in LOV.11 Tests are themselves described in RDF and have
a stable URI for tracking them over time. The URI is gen-
erated under the application namespace concatenated with
the schema prefix, the pattern and an MD5 checksum of the
SPARQL query string. The following listing displays a test
that checks whether the domain of foaf:primaryTopic in-
stance is a foaf:Document. We store metadata along with
every test case which allows us to easily filter test cases based
on different criteria.

1 tddt:foaf -RDFSDOMAIN -8 e121cf1111201b5d53de161e245c137
2 a tddo:Test ;
3 tddo:appliesTo tddo:Schema ;
4 tddo:basedOnPattern tddp:RDFSDOMAIN ;
5 tddo:generated tddo:AutoGenerated ;
6 tddo:references foaf:Document , foaf:primaryTopic ;
7 tddo:source <http :// xmlns.com/foaf /0.1/> ;
8 tddo:sparql """ SELECT DISTINCT ?s WHERE {
9 ?s foaf:primaryTopic > ?v1

10 FILTER NOT EXISTS {?s rdf:type+ foaf:Document }}""";
11 tddo:sparqlPrevalence
12 """SELECT (count( DISTINCT ?s) AS ?total) WHERE {
13 ?s foaf:primaryTopic ?c .} """ ;
14 tddo:testGenerator tddg:RDFSDOMAIN .

10LOV had 367 vocabularies at the date of last access
(5/10/2013) but not all were accessible.

11In addition to the LOV schemas, dbo (http://dbpedia.org/
ontology/), frbrer (http://iflastandards.info/ns/fr/frbr/frbrer/)
and isbd (http://iflastandards.info/ns/isbd/elements/) schemas
are included as prefixes.

http://svn.aksw.org/papers/2014/WWW_Databugger/public.pdf
http://svn.aksw.org/papers/2014/WWW_Databugger/public.pdf
https://lists.sourceforge.net/lists/listinfo/dbpedia-discussion
https://lists.sourceforge.net/lists/listinfo/dbpedia-developers
http://stackoverflow.com/questions/tagged/dbpedia
http://answers.semanticweb.com/tags/dbpedia/
http://en.wikipedia.org/wiki/Category:Wikipedia_maintenance
http://clarkparsia.com/pellet/icv/
http://dbpedia.org/ontology/
http://dbpedia.org/ontology/
http://iflastandards.info/ns/fr/frbr/frbrer/
http://iflastandards.info/ns/isbd/elements/


Pattern Description Type Binding example

COMP
Comparison between two literal values of
a resource.

dom
ran

pdep

a) dbo:deathDate before dbo:birthDate

b) dbo:releaseDate after dbo:latestReleaseDate

MATCH
The literal value of a resource
matches/does not match a certain regex
pattern

ran
a) dbo:isbn does not match “ˆ[0-9]{5}$”

b) foaf:phone contains any letters (“[A-Za-z]”)

LITRAN
The literal value of a resource (having a
certain type) must (not) be within a
specific range

dom
ran

pdep
mem

a) dbo:height of a dbo:Person is not within [0.4,2.5]

b) geo:lat of a spatial:Feature is not within [-90,90]

TYPEDEP
Type dependency: The type of a resource
may imply the attribution of another
type.

dom
cdep

a) a resource is a gml:_Feature but not a dbo:Place

b) a resource is a foaf:Person but not a dbo:Person

TYPRO-
DEP

A resource of a specific type should have
a certain property.

dom
pdep
mem

a) a foaf:Document should have a foaf:primaryTopic

b) a dbo:Person should have a dbo:birthDate

PVT

If a resource has a certain value V
assigned via a property P1 that in some
way classifies this resource, one can
assume the existence of another property
P2.

dom
pdep

a) DBpedia articles stemming from a Geographic location
template should have coordinates assigned via
georss:point

b) DBpedia resources in the category 1907 births should
have a dbo:birthDate

TRIPLE
A resource can be considered erroneous if
there are corresponding hints contained in
the dataset

a) resources stemming from Wikipedia articles that
are possibly copy-pasted (i.e. having the category
Possible cut-and-paste moves assigned)

b) geographical features (of the linkedgeodata.org
dataset) that are marked with the lgdo:fixme property

ONELANG
A literal value should contain at most one
literal for a certain language.

ran
card

a) a resource should only have one English foaf:name

b) a resource should only have one English rdfs:label

RDFS-
DOMAIN

The attribution of a resource’s property
(with a certain value) is only valid if the
resource is of a certain type.

dom
pdep
mem

a) a resource having a dbo:demographicsAsOf property
not being a dbo:PopulatedPlace

b) a resource has the “Cities of Africa” category assigned
but is not of type dbo:City

RDFS-
RANGE

The attribution of a resource’s property is
only valid if the value is of a certain type

ran
pdep
mem

a) a dbo:Person’s spouse not being a dbo:Person

b) a resource assigned via the foaf:based_near property
not being of type geo:SpatialThing

RDFS-
RANGED

The attribution of a resource’s property is
only valid if the literal value has a certain
datatype

ran
pdep
mem

a) the value of the property dbo:isPeerReviewed must
be of type xsd:boolean

b) the value of the property dbo:successfulLaunches

must be of type xsd:nonNegativeInteger

INVFUNC

Some values assigned to a resource are
considered to be unique for this particular
resource and must not occur in
connection with other resources.

ran

a) there must not be more than one resource with the
same foaf:homepage

b) there must not be more than one country with the
same dbo:capital

OWL-
CARD

Cardinality restriction on a property
ran
card

a) dbo:birthDate is a functional property

b) there should be just one skos:prefLabel

OWLDISJC Disjoint class constraint cdep
a) a foaf:Document is disjoint with foaf:Project

b) a dbo:Person is disjoint with dbo:Work

OWLDISJP Disjoint property constraint

dom
ran

pdep
mem

a) skos:prefLabel is disjoint with skos:hiddenLabel

b) dbo:bandMember is disjoint with dbo:birthPlace

OWL-
ASYMP

Asymmetric property constraint
dom
ran

a) dbo:child is asymmetric

b) dbo:birthPlace is asymmetric

OWL-
IRREFL

Irreflexive property constraint
dom
ran

a) dbo:parent is irreflexive

b) dbo:child is irreflexive

Table 1: Example templates and bindings. The column Type refers to the coverage type.



Schema Tests Schema Tests
dbpedia.org 1,723 id.loc.gov 48
nl.dbpedia.org 845 datos.bne.org 18
linkedgeodata.org 61

Table 3: Number of additional tests instantiated for
the enriched schemas.

Pattern Tests Manual
RDFSDOMAIN 16,645 3
RDFSRANGE 9.727 4
OWLDISJC 5,530 -
EDFSRANGED 5,073 -
OWLDISJP 1,813 10
OWLCARD 1,818 6
TYPRODEP 746 13
OWLASYMP 660 -
OWLIRREFL 342 -
INVFUNC 338 1
MATCH 9 9
LITRAN 5 5
COMP 4 4
ONELANG 4 4
PROPDEP 4 4
TYPDEP 2 2
TRIPLE 2 2

Table 4: Number of total and manual tests per pat-
tern for all LOV vocabularies.

For every dataset evaluated, we applied automatic schema
enrichment as described in Section 2. We used a high level
of confidence (0.9; see [4] for details) on the produced ax-
ioms and applied manual post-processing to remove certain
axioms. The number of additional tests instantiated for the
considered schemas are shown in Table 3.

Besides the automatically generated test cases, our method-
ology supports manual tests that may apply to a schema or a
dataset. The manual schema tests are reusable across differ-
ent datasets for all RDF data using that schema. The man-
ual dataset tests can be applied only to a specific dataset.
Manual tests usually require domain knowledge, which the
authors have for a subset of the evaluation datasets. For
the purposes of this evaluation, we defined 22 manual tests
for the DBpedia ontology (dbo), six for the LinkedGeoData
ontology (lgdo), three for the WGS84 Geo Positioning on-
tology (geo) as well as 15 manual tests for the DBpedia in
English dataset. Additionally, we defined 20 manual tests
for the SKOS vocabulary exploiting existing domain exper-
tise [20]. Table 4 presents an aggregation of the defined
tests based on the pattern they stem from.

5. LINKED DATA QUALITY EVALUATION
To showcase the re-usability of our automatically and man-
ually generated test cases, we chose the following datasets
for evaluation:
• dbpedia.org12 extracts data from the English

Wikipedia and publishes the data using the following
schemas: owl, dbo, foaf, dcterms, dc, skos, geo and
prov [15].

12
http://dbpedia.org (version 3.9)

• nl.dbpedia.org13 extracts data from the Dutch
Wikipedia edition using the same vocabularies as the
English DBpedia.
• linkedgeodata.org14 provides a linked data mirror of

OpenStreetMap15 using the following schemas: ngeo,
spatial, lgdo, dcterms, gsp, owl, geo, skos and
foaf [19].
• id.loc.gov16, is a SKOS dataset that publishes Li-

brary of Congress authority data using owl, foaf, dc-
terms, skos, mads, mrel and premis schemas.
• datos.bne.es17, provides open bibliographic linked

data from the Spanish National Library using owl, fr-
brer, isbd, dcterms and skos schemas.

To identify the schemas for each dataset, we used existing
information from the LODStats project18 [6]. The English
(dben) and Dutch (dbnl) DBpedia share a similar struc-
ture, but the actual data differs [13]. Both DBpedia and the
LinkedGeoData (lgd) datasets are generated from crowd-
sourced content and thus are prone to errors. The Library
of Congress authority data (loc) and the Open bibliographic
data from the Spanish National Library (datos) were cho-
sen as high quality bibliographic datasets with loc focus-
ing on publishing SKOS and in the case of datos FRBR19

data. The DBpedia datasets were tested using their online
SPARQL endpoints and the other three datasets were loaded
in a local triple store.20

Table 5 provides an overview of the dataset quality eval-
uation. In Table 6 we present the total errors aggregated
per schema and in Table 7 the total errors aggregated per
pattern. The test coverage for every dataset is provided in
Table 8.

The occurrence of a high number of errors in the English
DBpedia is attributed to the data loaded from external
sources. For example, the recent load of transformed Wiki-
data data21 almost doubled rdfs:domain and rdfs:range

violations and errors in the geo schema. A common error in
DBpedia is the rdfs:range violation. Triples are extracted
from data streams and complete object range validation can-
not occur at the time of extraction. Example violations
from the dbo schema are the rdfs:domain of dbo:sex (1M)
and dbo:years (550K) properties. Other dben errors based
on the foaf schema are attributed mainly to the incorrect
rdfs:domain or rdfs:range of foaf:primaryTopic (12M),
foaf:isPrimaryTopicOf (12M) foaf:thumbnail (3M) and
foaf:homepage (0.5M).

Among errors from the manual tests created for the DBpedia
ontology are the following:
• 163K (102K in dbnl) resources with wrong postal code

format.

13
http://nl.dbpedia.org (live version, accessed on 05/10)

14
http://downloads.linkedgeodata.org/releases/2013-08-14/

15
http://www.openstreetmap.org

16
http://id.loc.gov/download/ (accessed on 05/10/2013)

17
http://datos.bne.es/datadumps/, (accessed on 05/10/2013)

18
http://stats.lod2.eu/

19
www.oclc.org/research/activities/frbr.html

20We used the Virtuoso V7 triple store, because it supports
SPARQL 1.1 property paths.

21
http://www.mail-archive.com/dbpedia-discussion@lists.

sourceforge.net/msg05583.html

http://dbpedia.org
http://nl.dbpedia.org
http://downloads.linkedgeodata.org/releases/2013-08-14/
http://www.openstreetmap.org
http://id.loc.gov/download/
http://datos.bne.es/datadumps/
http://stats.lod2.eu/
www.oclc.org/research/activities/frbr.html
http://www.mail-archive.com/dbpedia-discussion@lists.sourceforge.net/msg05583.html
http://www.mail-archive.com/dbpedia-discussion@lists.sourceforge.net/msg05583.html


Dataset Triples Subjects Tests Pass Fail TO Errors ManEr EnrEr E/R
dbpedia.org 817,467,330 24,922,670 6,064 4,288 1.860 55 63,644,169 5,224,298 249,857 2.55
nl.dbpedia.org 74,790,253 4,831,594 5,173 4,149 812 73 5,375,671 211,604 15,041 1.11
linkedgeodata.org 274,690,851 51,918,417 634 545 86 3 57,693,912 133,140 1 1.11
datos.bne.es 60,017,091 7,470,044 2,473 2,376 89 8 27,943,993 25 537 3.74
id.loc.gov 436,126,273 53,072,042 536 499 28 9 9,392,909 49 3,663 0.18

Table 5: Evaluation overview for the five tested datasets. For every dataset we display the total number of
triples and the distinct number of subjects. We mention the total number of tests that run on each dataset,
how many tests passed, failed and did timeout (TO). Finally we show the total number of errors, as well the
total number of errors that occurred from manual (ManEr) and enriched (EnrEr) tests. The last column
shows the average errors per distinct subject.

• 7K (137 in dbnl) books with wrong ISBN format.
• 40K (1.2K in dbnl) persons with a death date and

without birth date.
• 638K persons without a birth date.
• 197K places without coordinates.
• 242K resources with coordinates that are not a
dbo:Place.
• 28K resources with exactly the same coordinates with

another resource.
• 9 resources with invalid longitude.

The lgd dataset also has a high number of errors per re-
source. Although the LinkedGeoData ontology is big, the
information of interest for our methodology is mostly lim-
ited to rdfs:domain and rdfs:range axioms. Because of
its broad vocabulary, mostly stemming from curated crowd-
sourced user input, only a few manual test cases were found.
In-depth domain knowledge is required to define further
tests. These resulted in 132K errors for resources with a
lgdo:fixme predicate and 250 with lgdo:todo, 637 wrong
phone numbers and 22 resources having a lgdo:start prop-
erty but no lgdo:end.

The datos dataset yielded a total of 28 million errors. In
absolute numbers, rdfs:domain and rdfs:range violations
were dominant. The isbd:P1016 and isbd:P1185 prop-
erties produced the most rdfs:domain violations (2.38M
and 2.35M respectively). The schemas used in datos

are expressive and there were many violations stemming
from owl:disjointWith and owl:propertyDisjointWith

constraints. With regards to the manual errors, 6 oc-
curred due to shared literals between skos:prefLabel and
skos:altLabel [20] and 25 because of property disjoint-
ness violations between skos:broader, skos:narrower and
skos:related.

The loc dataset generated a total of 9 million er-
rors. However, 99.9% originated from one test case:
the rdfs:domain of skos:member. Other minor errors
occurred in other schemas (cf. Table 6), e.g. in-
correct rdfs:domain of skos:topConceptOf and incorrect
rdfs:domain of foaf:focus. Similar to the datos dataset,
49 manual errors occurred from disjoint properties between
skos:broader, skos:narrower and skos:related.

The highest test coverage is found in the datos dataset. This
is due to the rich frbrer and isbd schemas. Although dben

had a bigger test set than datos, it publishes a lot of au-
tomatically generated properties under the dbp namespace
[15, Section 2] which lowers the coverage scores. The low

Errors
Schema Tests dben dbnl lgd datos loc
dbo 5,712 7.9M 716K - - -
frbrer 2,166 - - - 11K -
lgdo 224 - - 2.8M - -
isbd 179 - - - 28M -
prov 125 25M - - - -
foaf 95 25M 4.6M - - 59
gsp 83 - - 39M - -
mads 75 - - - - 280K
owl 48 5 3 2 5 -
skos 28 41 - - - 9M
dcterms 28 960 881 191K 37K 659
ngeo 18 - 119 - -
geo 7 2.8M 120K 16M - -

Table 6: Total errors in the evaluated datasets per
schema.

test coverage for lgd can be attributed to the very large
but relatively flat and inexpressive schema. For DBpedia in
Dutch we evaluated the Live endpoint and thus could not
calculate property and class occurrences.

6. DISCUSSION
The most frequent errors in all datasets were produced from
rdfs:domain and rdfs:range test cases. Domain and range
are two of the most commonly expressed axioms in most
schemas and, thus, produce many automated test cases and
good test coverage. Errors from such violations alone can-
not classify a dataset as low quality. In DBpedia, a re-
source is generated for every Wikipedia page and connected
with the original article through the foaf:primaryTopic,
foaf:isPrimaryTopicOf and prov:wasDerivedFrom predi-
cates. DBpedia neither states that the Wikipedia page
is a foaf:Document nor that the DBpedia resource a
prov:Entity, as the FOAF and PROV vocabularies de-
mand. This produced a total of 33 million errors (35% of
the total errors) in the English DBpedia. In most cases, fix-
ing such errors is easy and dramatically reduces the error
rate of a dataset. However, DBpedia, as well as most LOD
datasets, do not load all the schemas they reference in their
endpoints. Thus, locating such errors by using only local
knowledge is not effective, whereas our pattern library can
be used without further overhead.

Testing for external vocabularies. According to
our methodology, a dataset is tested against all the



Pattern dben dbnl lgd datos loc
COMP 1.7M 7 - - -
INVFUNC 279K 13K - 511 3.5K
LITRAN 9 - - - -
MATCH 171K 103K 637 - -
OWLASYMP 19K 3K - - -
OWLCARD 610 291 1 1 3
OWLDISJC 92 - - 8.1K 1.1K
OWLDISJP 3.4K 7K - 53 223
OWLIRREFL 1.4K 14 - - -
PVT 267K 1.2K 22 - -
RDFSDOMAIN 31M 2.3M 55M 28M 9M
RDFSRANGE 26M 2.5M 191K 320K 111K
RDFSRANGED 760K 286K 2.7M 2 -
TRIPLE - - 132K - -
TYPDEP 674K - - - -
TYPRODEP 2M 100K - - -

Table 7: Total errors per pattern.

Metric dben lgd datos loc
fpdom 20.32% 8.98% 72.26% 20.35%
fpran 23.67% 10.78% 37.64% 28.78%
fpdep 24.93% 13.65% 77.75% 29.78%
fcard 23.67% 10.78% 37.63% 28.78%
fmem 73.51% 12.78% 93.57% 58.62%
fcdep 37.55% 0% 93.56% 36.86%
Cov(QS,D) 33.94% 9.49% 68.74% 33.86%

Table 8: Test coverage on the evaluated datasets.

schemas it references. Although this approach pro-
vides better testing coverage, it can be insufficient
when testing against unused data. Properties like
foaf:weblog that do not exist in neither evaluated dataset,
auto-generate 3 tests for rdfs:domain, rdfs:range and
owl:InverseFunctionalProperty. In the future, the
methodology could be refined to intelligently pre-process a
dataset and reduce the number of test cases to run.

Revision of manually instantiated patterns. Although
our pattern library already covers a wide range of data qual-
ity errors, there are cases where the mere instantiation of
patterns is not sufficient. Binding COMP-a (cf. Table 1),
for example, returns 509 results in the English DBpedia.
Some of these results have, however, incomplete dates (i.e.
just xsd:gMonthDay). Technically, these results are outside
of the scope of the binding and the pattern and, therefore, a
false positive. This can only be resolved by writing manual
tests or adding another DQTP. In this scenario, the extended
test could be as follows:

1 SELECT COUNT (*) WHERE { ?s dbo:birthDate ?v1 .
2 ?s dbo:deathDate ?v2 .
3 FILTER (?v1 >?v2 && datatype (?v1)!=xsd:gMonthDay
4 && datatype (?v2)!= xsd:gMonthDay) }

While axioms in an OWL ontology are intended to be appli-
cable in a global context, our test-driven methodology also
depends on domain knowledge to capture more semantics
in data. However, there are cases where data constraints

can be very application specific and not universally valid.
For instance, due to the vast size of DBpedia, it is unrealis-
tic to expect completeness, e.g. that every dbo:Person has
a foaf:depiction and a dbo:birthDate. However, in the
context of an application like “A day like today in history”22

these properties are mandatory. Thus, a refinement of the
methodology could support manual tests cases associated
for an application context.

The software used to generate the tests and produce the eval-
uation results is available as open source23. At the project
website24, we provide a user interface and a dump of all
results as RDF .

7. RELATED WORK
Previous Data Quality Measurements on DBpedia.
The first publication of DBpedia [1] mainly concentrates on
the data source – Wikipedia. Errors in the RDF data are
attributed to several shortcomings in the authoring process,
e.g. the usage of tables instead of templates, the encod-
ing of layout information like color in templates and so on.
Other inaccuracies occur due to an imprecise use of the wiki
markup or when duplicate information is given, as in height
= 5’11” (180cm). To avoid those errors the authors provide
some authoring guidelines in accordance with guidelines cre-
ated by the Wikipedia community.
In [14], the authors concentrate more on the extraction pro-
cess, comparing the Generic with the Mapping-based In-
fobox Extraction approach. It is shown that by mapping
Wikipedia templates to a manually created, simple ontol-
ogy, one can obtain a far better data quality, eliminating
data type errors as well as a better linkage between entities
of the dataset. Other errors concern class hierarchies e.g.
omissions in the automatically created YAGO classification
schema.
Another issue already addressed in the future work section
of [14] is the fusion of cross-language knowledge of the lan-
guage specific DBpedia instances. This topic as well as other
internationalization issues are treated in [13]. There, differ-
ent extraction problems of the Greek DBpedia are presented
that can also be applied to other languages, especially those
using non-Latin characters.
Another study aimed to develop a framework for the DB-
pedia quality assessment is presented in [21] and involves a
manual and a semi-automatic process. In the manual phase
the authors detects common problems and classify them in a
taxonomy. After that, they crowdsource the evaluation of a
large number of individual resources and let users structure
it according to their taxonomy.

General Linked Data Quality Assessment. There ex-
ist several approaches for assessing the quality of Linked
Data. We only give a brief overview here and refer to [22]
for details. Approaches can be broadly classified into (i)
automated (e.g. [9]), (ii) semi-automated (e.g. [7]) or (iii)
manual (e.g. [2, 16]) methodologies. These approaches are
useful at the process level wherein they introduce system-
atic methodologies to assess the quality of a dataset. How-
ever, the drawbacks include a considerable amount of user

22
http://el.dbpedia.org/apps/DayLikeToday/

23
http://github.com/AKSW/Databugger

24
http://databugger.aksw.org

http://el.dbpedia.org/apps/DayLikeToday/
http://github.com/AKSW/Databugger
http://databugger.aksw.org


involvement, inability to produce interpretable results, or
not allowing a user the freedom to choose the input dataset.
In our case, we focused on a very lightweight framework and
the development of a library based on real user input.
Additionally, there have been efforts to assess the quality
of Web Data [5] on the whole, which included the analysis
of 14.1 billion HTML tables from Google’s general-purpose
web crawl in order to retrieve tables with high-quality rela-
tions. In a similar vein, in [10], the quality of RDF data was
assessed. This study detected the errors occurring while
publishing RDF data along with the effects and means to
improve the quality of structured data on the web. In a re-
cent study, 4 million RDF/XML documents were analyzed
which provided insights into the level of conformance these
documents had in accordance to the Linked Data guidelines.
On the one hand, these efforts contributed towards assessing
a vast amount of Web or RDF/XML data, however, most
of the analysis was performed automatically, therefore over-
looking the problems arising due to contextual discrepan-
cies. In previous work, we used similar ideas for describing
the evolution of knowledge bases [17].

Rules and SPARQL. The approach described in [8] advo-
cates the use of SPARQL and SPIN for RDF data quality as-
sessment and shares some similarity with our methodology.
However, a domain expert is required for the instantiation
of test patterns. SPARQL Inferencing Notation (SPIN) [12]
is a W3C submission aiming at representing rules and con-
straints on Semantic Web models. SPIN also allows users
to define SPARQL functions and reuse SPARQL queries.
The difference between SPIN and our pattern syntax, is
that SPIN functions would not fully support our Pattern
Bindings. SPIN function arguments must have specific con-
straints on the argument datatype or argument class and
do not support operators, e.g. ‘=’, ‘>’, ‘!’, ‘+’, ‘*’, or prop-
erty paths25. However, our approach is still compatible with
SPIN when allowing to initialise templates with specific sets
of applicable operators. In that case, however, the number
of templates increases. Due to this restrictions, SPIN defines
fewer but more general constraints. The following SPIN ex-
ample26 tries to locate all the owl:disjointWith constraint
violations.

1 SELECT ?x WHERE { ?c1 owl:disjointWith ?c2 .
2 ?x a ?c1 .
3 ?x a ?c2 . }

The problems of this type of query is that: 1) they are more
expensive to execute, 2) aggregate all errors in a single re-
sult which makes it harder to debug and 3) cannot capture
violations like foaf:primaryTopic if the foaf schema is not
loaded in the knowledge base itself.
One of the advantages of converting our templates to SPIN is
that the structure of the SPARQL query itself can be stored
directly in RDF, which, however, renders it more complex.
From the efforts related to SPIN, we re-used their existing
data quality patterns and ontologies for error types.
Another related approach is the Pellet Integrity Constraint
Validator (ICV)27. Pellet ICV [18] translates OWL integrity

25
http://www.w3.org/TR/2010/WD-sparql11-property-paths-20100126/

26
http://topbraid.org/spin/owlrl-all.html#cax-dw

27
http://clarkparsia.com/pellet/icv/

constraints into SPARQL queries. Similar to our approach,
the execution of those SPARQL queries indicates violations.
An implication of the integrity constraint semantics of Pellet
ICV is that a partial unique names assumption (all resources
are considered to be different unless equality is explicitly
stated) and a closed world assumption is in effect. We use
the same strategy as part of our methodology, but go beyond
it by allowing users to directly (re-)use DQTPs not neces-
sarily encoded in OWL and by providing automatic schema
enrichment.
Schemarama28 is a very early (2001) constraint validation
approach based on using the Squish RDF language instead
of SPARQL. It does not offer a templating mechanism or a
classification of data quality problems.
For XML, Schematron29 is an ISO standard for validation
and quality control of XML documents based on XPath and
XSLT. We argue that similar adapted mechanisms for RDF
are of crucial importance to provide solutions allowing the
usage of RDF in settings, which require either high quality
data or at least an accurate assessment of its quality.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we described a novel approach for improving
Linked Data quality. The approach is inspired by test-driven
software engineering and is centered around the definition
of data quality integrity constraints, which are represented
in SPARQL query templates. We compiled a comprehensive
set of generic Data Quality Test Patterns (DQTP), which we
instantiated for 297 schemas resulting in 32,293 test cases.
We reused these test cases to evaluate the quality of five
LOD datasets. Our evaluation showed that DQTPs are able
to reveal a substantial amount of data quality issues in an
effective and efficient way.

We see this work as the first step in a larger research and
development agenda to position test-driven data engineering
similar to test-driven software engineering. In future work,
we aim to tackle automatic repair strategies, i.e. how can
templates and bindings be used to fix problems efficiently.
We also plan to implement a test-driven data quality cock-
pit, which allows users to easily instantiate and run DQTPs
based on custom knowledge bases. As a result, we hope that
test-driven data quality can contribute to solve one of the
most pressing problems of the Data Web – the improvement
of data quality and the increase of Linked Data fitness for
use.
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http://swordfish.rdfweb.org/discovery/2001/01/schemarama/
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APPENDIX
Pattern Descriptions

In this section we present more detailed descriptions of Data
Quality Test Patterns being part of our Test-driven Data
Quality Methodology. We illustrate these patterns in detail
and give examples of pattern bindings.

COMP Pattern. Depending on the property semantics,
there are cases where two different literal values must have
a specific ordering with respect to an operator. P1 and P2
are the datatype properties we need to compare and OP is
the comparison operator R(OP) = { <, <=, >, >=, =, != }.

1 SELECT ?s WHERE { ?s %%P1%% ?v1 .
2 ?s %%P2%% ?v2 .
3 FILTER ( ?v1 %%OP%% ?v2 ) }

Example bindings:
1. dbo:deathDate before ‘<’ dbo:birthDate
2. dbo:releaseDate after ‘>’ dbo:latestReleaseDate
3. dbo:demolitionDate before ‘<’

dbo:buildingStartDate

MATCH Pattern. Application logic or real world con-
straints may put restrictions on the form of a literal value.
P1 is the property we need to check against REGEX and
NOP can be a not operator (‘!’) or empty.

1 SELECT DISTINCT ?s WHERE { ?s %%P1%% ?value .
2 FILTER ( %%NOP%% regex(str(?value), %%REGEX%) ) }

Example bindings:
1. dbo:isbn format is different ’ !’ from

“ˆ([iIsSbBnN 0-9-])*$”
2. dbo:postCode format is different ‘!’ from “ˆ[0-9]{5}$”
3. foaf:phone contains any letters (“[A-Za-z]”)

LITRAN Pattern. Application logic or real world facts may
put restrictions on the range of a literal value depending on
the type of a resource. P1 is a property of an instance of
class T1 and its literal value must be between the range of
[Vmin,Vmax ] or outside (NOP can be a ‘!’ ). The query
is phrased so that ”between” does not require negation, but
”outside” does.

1 SELECT DISTINCT ?s WHERE {
2 ?s rdf:type %%T1%% .
3 ?s %%P1%% ?value .
4 FILTER( %%NOP%%
5 (?value < %%Vmin%% ||
6 ?value > %%Vmax %%))) }

Example bindings:
1. a dbo:Person should have dbo:height between 0.4 and

2.5 meters
2. the geo:lat of a gml:_Feature must be in range

[-90,90]
3. the geo:long of a gml:_Feature must be in range

[-180,180]

TYPEDEP Pattern. The type of a resource may imply the
attribution of a second type. In this pattern T1 and T2 are
the types tested for coexistence.

1 SELECT DISTINCT ?s WHERE {
2 ?s rdf:type %%T1%% .
3 FILTER NOT EXISTS { ?s rdf:type %%T2%% } }

Example bindings:
1. gml:_Feature should imply dbo:Place

2. yago:GeoclassCapitalOfAPoliticalEntity should
imply dbo:Place

3. foaf:Person should imply dbo:Person

TYPRODEP Pattern. Resources of a given type sometimes
must be accompanied by a specified property. In this pattern
the type T1 is tested for coexistence with property P1.

1 SELECT DISTINCT ?s WHERE {
2 ?s rdf:type %%T1%% .
3 FILTER NOT EXISTS { ?s %%P1%% ?v } }

Example bindings: Resources representing
1. a dbo:Place should have a geo:lat property
2. a dbo:Person should have a dbo:birthDate property
3. a dbo:Person should have a foaf:depiction property

PVT Pattern. If a resource has a certain value V assigned
via a property P1 that in some way classifies this resource,
one can assume the existence of other properties P2. The
following pattern provides the test template for such cases.

1 SELECT DISTINCT ?s WHERE {
2 ?s %%P1%% %%V1%%
3 FILTER NOT EXISTS { ?s %%P2%% ?p } }

Example bindings: Resources
1. being extracted from a

dpt:Template:Geographic_location should have
a geo coordinate assigned (dbo:georss:point)

2. belonging to the category dbc:1907_births should
have a dbo:birthDate

3. belonging to a Wikipedia category for
maintenance, because they are using
a template (dbp:wikiPageUsesTemplate
dbt:Infobox_character), but have unlabeled fields
(i.e. missing properties such as dbpprop:first)30

TRIPLE Pattern. In some cases hints with regards to errors
or bad smells are already contained in the dataset. These
are given as certain property P1 value V1 combinations and
can be tested with the following pattern.

1 SELECT DISTINCT ?s WHERE { ?s %%P1%% %%V1%% }

Example bindings: Resources extracted from Wikipedia ar-
ticles, that

30
http://en.wikipedia.org/wiki/Category:Articles_using_Infobox_

character_with_multiple_unlabeled_fields

http://en.wikipedia.org/wiki/Category:Articles_using_Infobox_character_with_multiple_unlabeled_fields
http://en.wikipedia.org/wiki/Category:Articles_using_Infobox_character_with_multiple_unlabeled_fields


1. were possibly copy-pasted (dc:subject
dbc:Possible_cut-and-paste_moves)

2. have an inconsistent citation for-
mat (dbp:wikiPageUsesTemplate
dbt:Inconsistent_citations)

3. have missing files (dc:subject
dbc:Articles_with_missing_files)

ONELANG Pattern. A literal value should contain at most
1 literal for a language. P1 is the property containing the
literal and V1 is the language we want to check.

1 SELECT DISTINCT ?s WHERE { ?s %%P1%% ?c
2 BIND ( lang(?c) AS ?l )
3 FILTER (isLiteral (?c) && lang(?c) = %%V1%%)}
4 GROUP BY ?s HAVING COUNT (?l) > 1

Example bindings:
1. a single English (“en”) foaf:name

2. a single English (“en”) rdfs:label

RDFSDOMAIN Pattern. The attribution of a property is
only valid when the class is in the domain of the property.
In this pattern the property P1 is tested for coexistence of
the type T1. Optionally value V1 can be specified to narrow
the test to the specified value for P1.

1 SELECT DISTINCT ?s WHERE { ?s %%P1%% %%V1%% .
2 FILTER NOT EXISTS {?s rdf:type ?T1 .
3 ?T1 rdfs:subClassOf %%OP%% %%T1%% . }
4 FILTER NOT EXISTS {?s rdf:type %%T1%% } }

Example bindings:
1. dc:subject dbc:CapitalsInAfrica should have type

dbo:Place attributed
2. dbo:dissolved should have type dbo:SoccerClub at-

tributed

RDFSRANGE Pattern. The object of a triple must be
within the range of the property. In this pattern property
P1 and type T1 are tested for coexistence.

1 SELECT DISTINCT ?s WHERE { ?s %%P1%% ?c .
2 FILTER NOT EXISTS {?c rdf:type ?T1 .
3 ?T1 rdfs:subClassOf %%OP%% %%T1%% . }
4 FILTER NOT EXISTS {?c rdf:type %%T1%% } }

Example bindings:
1. the dbo:spouse of a dbo:Person must be a dbo:Person

2. the dbo:birthPlace of a dbo:Person must be a
dbo:Place

3. the dbo:dean of a dbo:EducationalInstitution must
be a dbo:Person

RDFSRANGED Pattern. The (literal) object of a triple
must be of a certain datatype determined by the property
used. In this pattern the property P1 and the datatype D1
are tested for coexistence.

1 SELECT DISTINCT ?s WHERE {
2 ?s %%P1%% ?c.
3 FILTER (DATATYPE (?c) != %%D1%%) }

Example bindings:
1. the value of the property dbo:certificationDate must

be of type xsd:date

2. the value of the property dbo:isPeerReviewed must be
of type xsd:boolean

3. the value of the property dbo:successfulLaunches

must be of type xsd:nonNegativeInteger

INVFUNC Pattern. Some values assigned to a resource
are considered to be unique for this particular resource and
should not occur in connection with other resources. This
pattern can be extended to also restrict the value as shown
in the comments of the following listing.

1 SELECT DISTINCT ?s WHERE{
2 ?a %%P1%% ?v1 . # ?a %%P2%% %%V1%% .
3 ?b %%P1%% ?v2 . # ?b %%P2%% %%V1%% .
4 FILTER ((str(?v1) == str(?v2)) && (?a != ?b))}

Example bindings:
1. two different resources should not have the same

foaf:homepage (P1, P2 )
2. two countries should not have the same dbo:capital

OWLCARD Pattern. Using this pattern, we can test for
cardinal constraints on specific properties. P1 is the prop-
erty we need to compare with V1 and OP is the comparison
operator (<, <=, >, >=, =, !=)

1 SELECT DISTINCT ?s WHERE { ?s %%P1%% ?c }
2 GROUP BY ?s HAVING count(?c) %%OP%% %%V1%%

Example bindings:
1. every property defined as owl:FunctionalProperty

(e.g. dbo:birthDate, dbo:latestReleaseDate) in the
ontology cannot exist more than once (>1)

2. dbpedia.org’s resources have an rdfs:label for each
of its 20 different languages. Therefore each resource
should not have more than 20 labels (>20), the same
holds for other properties such as rdfs:comment.

OWLDISJC Pattern. A resource must not belong to two
disjoint classes. T1 and T2 are the two disjoint classes we
check.

1 SELECT DISTINCT ?s WHERE {
2 ?s rdf:type %%T1%% .
3 ?s rdf:type %%T2%% . }

Example bindings: (a) dbo:Person is owl:disjointWith

with dbo:Place, (b) dbo:Person is owl:disjointWith with
dbo:Work,

OWLDISJP Pattern. A triple object v cannot be assigned
to a resource s via both properties P1 and P2 if these are
stated to be disjoint by an owl:disjointProperty axiom.

1 SELECT DISTINCT ?s WHERE { ?s %%P1%% ?v .
2 ?s %%P2%% ?v .}



Example bindings:
1. skos:prefLabel is disjoint with skos:hiddenLabel

2. dbo:bandMember is disjoint with dbo:birthPlace

OWLASYMP Pattern. For a given property P1 that is de-
clared to be asymmetric, this pattern checks if there are
violating cases where it is nonetheless used as symmetric
property, i.e. for two resources a and b there are axioms for
a P1 b. and b P1 a. .

1 SELECT ?r1 WHERE { ?r1 %%P1%% ?r2 .
2 ?r2 %%P1%% ?r1 . }

Example bindings:
1. child parent relations (dbo:child) cannot be symmetric
2. person birth place relations (dbo:birthPlace) cannot

be symmetric

OWLIRREFL Pattern. For a given property P1 that is
declared to be irreflexive, this pattern find violating state-
ments that nonetheless use this property reflexively, i.e. for
a resource a there is an axiom a P1 a. .

1 SELECT DISTINCT ?s WHERE {?s %%P1%% ?s .}

Example bindings:
1. a resource cannot be its own parent (dbo:parent)
2. a resource cannot be its own child (dbo:child)
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