
A Semantics-based User Interface Model
for Content Annotation, Authoring and

Exploration

Der Fakultät für Mathematik und Informatik
der Universität Leipzig

eingereichte

DISSERTATION

zur Erlangung des akademischen Grades

Doktor-Ingenieur
(Dr. Ing.)

im Fachgebiet Informatik

vorgelegt

von M.Sc. Ali Khalili

geboren am 26. Juni 1984 in Karaj, Iran

Die Annahme der Dissertation wurde empfohlen von:

1. Prof. Dr. Klaus-Peter Fähnrich, Universität Leipzig
2. Prof. Dr. Roberto Garćıa, Universitat de Lleida

Die Verleihung des akademischen Grades erfolgt mit Bestehen der
Verteidigung am 26.1.2015 mit dem Gesamtprädikat

magna cum laude.

Bibliographic Data

Title: A Semantics-based User Interface Model for Content Annotation, Authoring
and Exploration
Author: Ali Khalili
Institution: Universität Leipzig, Fakultät für Mathematik und Informatik
Statistical Information: 182 pages, 78 figures, 11 tables, 165 literature references

Abstract

The Semantic Web and Linked Data movements with the aim of creating, publish-
ing and interconnecting machine readable information have gained traction in the
last years. However, the majority of information still is contained in and exchanged
using unstructured documents, such as Web pages, text documents, images and
videos. This can also not be expected to change, since text, images and videos are
the natural way in which humans interact with information. Semantic structuring
of content on the other hand provides a wide range of advantages compared to
unstructured information. Semantically-enriched documents facilitate information
search and retrieval, presentation, integration, reusability, interoperability and
personalization. Looking at the life-cycle of semantic content on the Web of Data,
we see quite some progress on the backend side in storing structured content or for
linking data and schemata. Nevertheless, the currently least developed aspect of
the semantic content life-cycle is from our point of view the user-friendly manual
and semi-automatic creation of rich semantic content.

In this thesis, we propose a semantics-based user interface model, which aims
to reduce the complexity of underlying technologies for semantic enrichment of
content by Web users. By surveying existing tools and approaches for semantic
content authoring, we extracted a set of guidelines for designing efficient and
effective semantic authoring user interfaces. We applied these guidelines to devise
a semantics-based user interface model called WYSIWYM (What You See Is What
You Mean) which enables integrated authoring, visualization and exploration of
unstructured and (semi-)structured content. To assess the applicability of our
proposed WYSIWYM model, we incorporated the model into four real-world use
cases comprising two general and two domain-specific applications. These use cases
address four aspects of the WYSIWYM implementation: 1) Its integration into
existing user interfaces, 2) Utilizing it for lightweight text analytics to incentivize
users, 3) Dealing with crowdsourcing of semi-structured e-learning content, 4)
Incorporating it for authoring of semantic medical prescriptions.

III

Publications

This thesis is based on the following conference and journal publications, in
which I have been author or contributor. At the respective chapter and section, I
included the references to the appropriate publications.

Conference Publications, peer-reviewed

• conTEXT – Lightweight Text Analytics using Linked Data,
In proceedings of the 11th Extended Semantic Web Conference (ESWC2014)
[Khalili et al., 2014].

* 1st Prize of the AI Mashup Challenge 2014.

• WYSIWYM Authoring of Structured Content Based on Schema.org,
In proceedings of the 14th International Conference on Web Information
Systems Engineering (WISE 2013) [Khalili and Auer, 2013b].

• Semantic Medical Prescriptions – Towards Intelligent and Interoperable Med-
ical Prescriptions, In proceedings of the IEEE 7th International Conference
on Semantic Computing (ICSC 2013) [Khalili and Sedaghati, 2013a].

* Winner of the WoLE2013 challenge (Doing Good by Linking Entities).

* Best-poster prize at Leipzig Research Festival for Life Sciences 2012.

• CrowdLearn: Crowd-sourcing the Creation of Highly-structured e-Learning
Content, In proceedings of the 5th International Conference on Computer
Supported Education (CSEDU 2013) [Tarasowa et al., 2013].

* Nominated for the best-paper award.

• SlideWiki: Elicitation and Sharing of Corporate Knowledge Using Presenta-
tions, In proceedings of the 18th International Conference on Knowledge En-
gineering and Knowledge Management (EKAW 2012) [Khalili et al., 2012b].

* Nominated for the best-paper award.

• The RDFa Content Editor - From WYSIWYG to WYSIWYM,
In proceedings of the 36th International Conference on Computer Software
and Applications (COMPSAC 2012) [Khalili et al., 2012a].

* Best-paper award.

IV

Journal Publications, peer-reviewed

• WYSIWYM – Integrated Visualization, Exploration and Authoring of Se-
mantically Enriched Un-structured Content, Semantic Web Journal
[Khalili and Auer, 2014].

• User Interfaces for Semantic Authoring of Textual Content: A Systematic
Literature Review, Journal of Web Semantics [Khalili and Auer, 2013a].

• Crowd-sourcing (semantically) Structured Multilingual Educational Content
(CoSMEC), Open Praxis Journal [Tarasowa et al., 2014].

* Creative Innovation Project Award 2014 for OpenCourseWare Excellence.

• A WYSIWYM Interface for Semantic Enrichment of E-Prescriptions us-
ing Linked Open Drug Data, International Journal On Advances in Life
Sciences [Khalili and Sedaghati, 2013b].

V

For my parents,
Simin Ozar & Mohammad Ebrahim

who are the smile of my life...

And for my wife,
Bita

who is the best gift of my life...

VI

Acknowledgments

PhD research is not a lonely journey. There are people who support, guide and
inspire you to pave the way as you go on this journey.

First and foremost I would like to thank my supervisors Prof. Klaus-Peter
Fähnrich and Prof. Sören Auer, without their expertise and guidance this thesis
would not have been possible. I have been amazingly fortunate to work with Sören
who was not only my mentor but also a good friend. He gave me the freedom to
explore on my own, and at the same time the guidance to recover when my steps
faltered. I would like to appreciate all his contributions of time, ideas and funding
to make my PhD experience fruitful and stimulating. I hope that one day I would
become as good an advisor to my students as Sören has been to me.

I am also thankful to all my colleagues at AKSW research group for their support
and constructive comments during the development of this thesis. Special thanks
go to Dr. Axel-C. Ngonga Ngomo, Dr. Jens Lehman, Timofey Ermilov, Ivan
Ermilov, Sebastian Hellman, Saeedeh Shekarpour and Amrapali Zaveri.

I would like to thank the German Academic Exchange Service (DAAD) for
awarding me the scholarship to pursue my PhD in Germany.

“He who teaches me a word makes me his servant”. I am very grateful to all my
former teachers and advisors in Iran who taught me new things and helped me to
build up my knowledge. I am especially thankful to Dr. Shahriar Mohammadi, Dr.
M. Jafar Tarokh, Dr. Eslam Nazemi and Dr. Fereidoon Shams.

I also would like to express my deepest gratitude to my family who never failed
to support me in all my endeavors. I am grateful to my father who has not only
been a successful manager outside the family but also a wise leader for the whole
family. The same level of gratitude goes to my mother as my first principal at
school who taught me patience and persistence when coping with problems. I
am also grateful to my brothers HamidReza, Hamed and Mohammad Amin who
have been supportive in all my steps. I really appreciate their love, inspiration,
emotional support, understanding, prayers and endless encouragement to pursue
my higher education.

And finally, I would like to thank my beloved wife Bita for her unwavering support
and encouragement, which helped me to tolerate and flatten all the difficulties
of living abroad. Bita’s contribution even goes beyond the family support since
she helped me in writing one chapter of this thesis, which was based on a joint
interdisciplinary project we collaborated on.

VII

Contents

1. Introduction 1
1.1. User Scenario . 3
1.2. Motivation . 3
1.3. Research Questions and Contributions 5
1.4. Thesis in a Glance . 8

2. Semantic Web Technologies 12
2.1. The Definition of Semantic Web 12
2.2. Resource Description Framework (RDF) 13

2.2.1. Resource . 14
2.2.2. Property . 14
2.2.3. Statement . 14
2.2.4. RDF Serialization Formats 15

2.3. Ontology . 20
2.3.1. Ontology Classification . 22
2.3.2. Schema.org . 23

2.4. SPARQL Query Language . 24
2.5. Triplestore . 25
2.6. Natural Language Processing on the Semantic Web 25

3. Concepts and State of the Art 28
3.1. Research Method . 28

3.1.1. Research Questions . 29
3.1.2. Search Strategy . 29
3.1.3. Study Selection . 30
3.1.4. Data Extraction and Analysis 32
3.1.5. Overview of Included Studies 33

3.2. Terminology . 34
3.3. Semantic Authoring Approaches 36

3.3.1. Bottom-Up Approaches 37
3.3.2. Top-Down Approaches . 38

3.4. Quality Attributes . 38
3.5. Quality Attributes Dependencies 48
3.6. User Types . 49
3.7. User Interface Evaluation . 52
3.8. Example Tools . 54

3.8.1. OntoWiki . 54
3.8.2. SAHA 3 Metadata Editor 56

VIII

Contents

3.8.3. Loomp . 57
3.9. Research and Technology Challenges 58
3.10. Conclusions . 60

4. WYSIWYM User Interface Model 62
4.1. Approaches for Semantic UI Models 62

4.1.1. Visual Mapping Techniques 62
4.1.2. Structured Content Visualization 63
4.1.3. WYSIWYM . 64

4.2. WYSIWYM Concept . 64
4.2.1. Semantic Representation Models 67
4.2.2. Visualization . 70
4.2.3. Exploration . 73
4.2.4. Authoring . 74
4.2.5. Bindings . 75
4.2.6. Helper Components . 78

4.3. Conclusions . 79

5. From WYSIWYG to WYSIWYM 80
5.1. WYSIWYG . 80
5.2. RDFaCE (RDFa Content Editor) 81
5.3. Views for Semantic Text Authoring 85
5.4. Combining NLP-API results . 88
5.5. Use Cases and Variations of RDFaCE 91

5.5.1. Semantic Blogging in WordPress 91
5.5.2. Data Journalism using rNews 92
5.5.3. Search Engine Optimization (SEO) using Schema.org . . . 93

5.6. Usability Evaluation . 96
5.7. Comparison of RDFaCE to Existing SCA Tools 99
5.8. Conclusions . 101

6. WYSIWYM for Lightweight Text Analytics 102
6.1. Analytical Information Imbalance 102
6.2. conTEXT: A Text Analytics Architecture of Participation 103
6.3. Classification of Existing Text Analysis Tools 104
6.4. Workflow and Interface Design . 106
6.5. Views for Text Analytics . 111
6.6. Implementation . 114
6.7. Evaluation . 115

6.7.1. Usefulness study . 116
6.7.2. Usability study . 117

6.8. Conclusion . 118

IX

Contents

7. WYSIWYM for Authoring of E-Learning Content 119
7.1. WikiApp Data Model . 119

7.1.1. Data Model . 121
7.1.2. Operations . 123

7.2. Model-driven generation of WikiApp implementations 123
7.3. SlideWiki . 125

7.3.1. Authoring of OpenCourseWare 125
7.3.2. Elicitation and Sharing of Corporate Knowledge 128

7.4. Implementation . 131
7.5. SlideWiki vs. Presentation Management Systems 137
7.6. Usability Evaluation . 137
7.7. Conclusion . 138

8. WYSIWYM for Authoring of Semantic Medical Prescriptions 140
8.1. E-Prescriptions . 140
8.2. Linked Open Drug Data (LODD) 141
8.3. Semantic Authoring of Medical Prescriptions using Pharmer . . . 144

8.3.1. Architecture . 145
8.3.2. Features . 146

8.4. Possible Use Cases of Pharmer . 147
8.4.1. A Ubiquitous Computing Platform for Semantic E-Prescribing147
8.4.2. A Professional Social Network for Health-care Service Providers149

8.5. Pharmer Stakeholders: Example Scenario 150
8.6. Usability Evaluation . 153
8.7. Conclusion . 154

9. Conclusions and Future Work 155
9.1. Answers to Research Questions 155
9.2. Summary of the Results . 157
9.3. Impact . 158
9.4. Limitations and Future Directions 160

A. Software Release History 163

List of Abbreviations 164

List of Tables 165

List of Figures 166

Selbständigkeitserklärung 182

X

Chapter 1

Introduction

“I begin with an idea and then it becomes
something else.” — Pablo Picasso

The Semantic Web and Linked Data movements with the aim of creating,
publishing and interconnecting machine readable information have gained traction
in the last years (cf. LODStats1 [Auer et al., 2012b]). However, the majority of
information still is contained in and exchanged using unstructured documents,
such as Web pages, text documents, images and videos. This can also not be
expected to change, since text, images and videos are the natural way in which
humans interact with information. Semantic structuring of content on the other
hand provides a wide range of advantages compared to unstructured information:

• For search and retrieval enriching documents with semantic representations
helps to create more efficient and effective search interfaces, such as faceted
search [Tunkelang, 2009] or question answering [Lopez et al., 2011].

• In information presentation semantically enriched documents can be used to
create more sophisticated ways of flexibly visualizing information, such as by
means of semantic overlays as described in [Burel et al., 2009].

• For information integration semantically enriched documents can be used to
provide unified views on heterogeneous data stored in different applications
by creating composite applications such as semantic mashups [Ankolekar
et al., 2007].

• To realize personalization, semantic documents provide customized and
context-specific information which better fits user needs and will result in
delivering customized applications such as personalized semantic portals [Sah
et al., 2007].

• For reusability and interoperability enriching documents with semantic repre-
sentations (e.g. using the Simple Knowledge Organization System (SKOS)2

and Dublin Core vocabularies3) facilitates exchanging content between dis-
parate systems and enables building applications such as executable pa-
pers [Muller et al., 2011].

1http://stats.lod2.eu
2http://www.w3.org/2004/02/skos/
3http://dublincore.org/

1

http://stats.lod2.eu
http://www.w3.org/2004/02/skos/
http://dublincore.org/

1. Introduction

Natural Language Processing (NLP) technologies (e.g. named entity recognition
and relationship extraction) as well as formalisms for the integrated representation
of unstructured and semantic content (such as RDFa and Microdata) aim at
bridging the semantic gap between unstructured and semantic representation
formalisms. However, in order for humans to truly benefit from this integration, we
still need user-friendly interfaces which enable integrated visualization, exploration
and authoring of unstructured and structured content. Looking at the life-cycle
of semantic content on the Web of Data [Auer et al., 2012a], we see quite some
progress on the backend side. For storing structured content, a variety of triple
stores have been developed and their performance and maturity improves steadily
(cf. recent triple store benchmarking efforts such as the DBpedia benchmark [Morsey
et al., 2011]). Similarly tools and algorithms for linking data and schemata are
progressing and approaches are deployed for the use on the emerging Web of
Data [Ngomo et al., 2013]. Nevertheless, the currently least developed aspect of
the semantic content life-cycle is from our point of view the user-friendly manual
and semi-automatic creation of rich semantic content.

In this thesis, we propose a semantics-based user interface model which aims to
reduce the complexity of underlying technologies for semantic enrichment of content
by Web users. This will facilitate the realization of the so called Social Semantic
Web [Breslin et al., 2009, Siorpaes and Simperl, 2010] – bringing a social novelty,
rather than a technical one to the current Semantic Web. By surveying existing
tools and approaches for semantic content authoring, we extracted a set of guidelines
for designing efficient and effective semantic authoring user interfaces. We applied
these guidelines to devise a semantics-based user interface model called What
You See Is What You Mean (WYSIWYM) which enables integrated authoring,
visualization and exploration of unstructured and (semi-)structured content. To
assess the applicability of our proposed WYSIWYM model, we incorporated the
model into four real-world use cases comprising two general and two domain-
specific applications. These use cases address four aspects of the WYSIWYM
implementation: 1) Its integration into existing user interfaces, 2) Utilizing it for
lightweight text analytics to incentivize users, 3) Dealing with crowdsourcing of
semi-structured e-learning content, 4) Incorporating it for authoring of semantic
medical prescriptions.

The specific requirements as well as the benefits of utilizing WYSIWYM user
interface model in each use case are also discussed in this thesis.

1.1. User Scenario

In this section we describe a user scenario (depicted in Figure 1.1) to motivate
our work:

Alice is a European journalist who works for an online magazine called DataWeb
magazine. She wants to write an article about the most demanded Data Science4

4Data Science involves using automated methods to analyze massive amounts of data and to

2

1.1. User Scenario

Job Posting
 Websites TextCo

Alice

Text Analysis Analysis Results

Job Poster

UIs for Semantic Content Authoring

UIs for Semantic Content Exploration

Figure 1.1.: A simple user scenario to exploit semantically-enriched content.

skills for IT jobs on the various job markets in Europe. In the traditional way,
Alice should make interviews with companies to collect data about the required
skills. Going one step further, Alice can use the information published on the job
posting Websites to extract the skills-related data for IT jobs in Europe. Alice
needs to read through the full descriptions of each job and manually extract the
required Data Science skills. Taking merely LinkedIn into consideration, there are
more than 8.000 IT-related jobs posted by the European companies in 2012-2014.5

Manual analysis of these amount of data is a cumbersome and time-consuming
task. Also, Alice wants to prepare different diagrams illustrating the skills demand
in different national or regional markets as well as their evolution over time for
inclusion into her article. She also plans to regularly review the results in the next
2-3 years and update her readers on recent developments. To facilitate this task,
Alice can contact the text analysis company TextCo. She needs to give TextCo
all the collected data and wait until they process these data and return her the
analysis result which might still be expensive and time consuming. TextCo has
much expertise in such NLP tasks and a number of tools at hand. However, these
tools have to be configured, adapted and integrated into a specific workflow, by
highly-skilled but expensive experts. TextCo estimates 2-3 person months effort to
perform this task and costs well above 10.000 Euro. Alice is not sure, whether her
article justifies such an investment.

What if Alice (with no or limited knowledge of programming) can perform this
sophisticated NLP task with just some clicks herself? The intuitive semantics-
based User Interfaces (UIs) for content annotation, authoring and exploration as
discussed in this thesis are one way to realize this vision.

extract knowledge from them. (http://datascience.nyu.edu/)
5http://context.aksw.org/linkedin/

3

http://datascience.nyu.edu/
http://context.aksw.org/linkedin/

1. Introduction

1.2. Motivation

In the following we outline the rational and motivation underlying the research
presented in this thesis:

M1. Semantic content authoring is cumbersome (difficult, time-consuming,
error-prone, requires knowledge representation expertise).
Structure makes data more useful, but at the same time makes data entry more
cumbersome [Chang et al., 2013]. Regardless of what additional knowledge is
needed for users to semantically annotate or enrich content, the mere requirement
to specify information precisely and unambiguously can be burdensome to users.
[Ross and Nisbett, 1991] identified this problem as channel factors – “small but
critical” facilitators that could dramatically impact a person’s actions. Channel
factor analysis has identified how even simple intervening steps to a task such as
needing to explicitly assign a name to a file at time of its creation will impact a
user’s decision whether to begin the task.

Another barrier is that creating structured content requires more cognitive load
from the users because they have to learn extra user interface elements [Van Kleek
et al., 2007] while being familiar with Knowledge Representation (KR) techniques
– means by which users express and communicate their meanings to machine [Davis
et al., 1993]. Even if users grasp the required knowledge for semantic content au-
thoring, the manual process of structured content authoring will be time-consuming
and error-prone. People naturally use partial, incomplete, or often vague descrip-
tions of content, however, for semantic authoring of content, they are required to
be precise and explicitly state their meaning using the available user interfaces.

M2. There is a lack of approaches, technologies and tools to facilitate
collaboration when authoring (semi-)structured content.
There is a huge amount of amateur and expert users who collaborate on and
contribute to the Social Web. Harnessing the power of such crowds can significantly
enhance and widen the practice of semantic content authoring. However, one of the
least developed aspects in the current semantic authoring systems is the support
of collaboration and crowdsourcing [Khalili and Auer, 2013a]. As discussed by
[d’Aquin et al., 2008], the collaboration-centric perspective on the process of
semantic content authoring introduces both challenges and interesting research
directions. Semantic authoring can take place transparently as a consequence of
the activity of a community of users and opportunistic ways of creating (semi-
)structured content can emerge from tasks other than the ones explicitly targeting
the creation of new content – that is, as a side effect of user activity.

M3. There is a lack of incentives and instant gratification for users to adopt
semantic content authoring.
One of the main obstacles hampering the adoption of semantic content authoring,

4

1.3. Research Questions and Contributions

is the lack of incentives and clear benefits to create semantic content [Lazaruk et al.,
2012]. The benefits of using semantic content are often de-coupled from the effort of
creating the semantic content thus demotivating users to author semantic content.
As discussed by [Simperl, 2012], understanding, stimulating and rewarding user’s
participation in semantic data management would result in massive production of
useful semantic content.

M4. There is a lack of standardization of UI technologies in the domain of
semantic content authoring.
Currently, semantic authoring user interfaces are not standardized and often do not
function consistent with user expectations. UI elements serve as proxies through
which users can manipulate information objects [Huynh et al., 2003]. Inconsistent
UIs are hard for users to master and will impel a cognitive load for the users.
For example, if the same control is used to perform different actions for semantic
content authoring, it will be impossible for users to apply what they have learned
and predict the outcome.

On the other hand, without standard shared user interface elements and tech-
niques, the development time and cost for semantic content authoring applications
will be higher. In this situation, more time is spent in re-designing existing UIs
rather than focusing on innovating. This will result in a high-barrier in creating
sophisticated semantic content authoring applications. Results of surveys reported
by [Heitmann et al., 2009], [Paulheim and Probst, 2010] and [Hachey, 2011] support
this fact as well.

Standardization of UI technologies in the domain of semantic content authoring
will ease user experience by providing consistency across different systems. Stan-
dardization will help developers with best practices for exposing functionality to
the end user when building Semantic Content Authoring (SCA) applications.

1.3. Research Questions and Contributions

Figure 1.2 shows on overview of the research questions addressed in this thesis
together with our key contributions to answer them. These research questions
were derived from the motivations discussed in Section 1.2.

RQ1. What are existing approaches for user-friendly semantic content
authoring?

By answering this research question, we aim to create a holistic view on existing
approaches and tools for user-friendly semantic content authoring. This is crucial
for conceiving guidelines for developing more effective and intuitive semantic
authoring interfaces. We divide this general research question into the following
more concrete sub-questions:

• RQ1.1. How to classify existing approaches for semantic content authoring?

5

1. Introduction

How can we enable

user-friendly manual and

semi-automatic creation

of rich semantic content?

RQ1. What are existing approaches for

user-friendly semantic content authoring?
• RQ1.1. How to classify existing approaches for

semantic content authoring?

• RQ1.2. What types of user interfaces are used

by each approach?

• RQ1.3. What are the features supported by the

proposed user interfaces?

• RQ1.4. What types of users are targeted in

each approach?

• RQ1.5. How is the user interface evaluated?

RQ2. How can we bind user interface

elements to semantic representation

data models?

RQ3. How can we integrate semantic

content authoring features into the current

authoring tools on the Social Web?

RQ4. How can we exploit semantically-

enriched content for content analysis?
• RQ4.1. Can we utilize semantic content

benefits to incentivize users contributing to

the process of manual semantic content

authoring?

RQ5. How can we apply crowdsourcing &

collaborative content authoring techniques

to the process of semantic content

authoring?

RQ6. How can we apply semantic content

authoring to a domain-specific use case

for achieving content interoperability?

Systematic Literature Review:
• Terminology

• Semantic content authoring approaches

• User interface types and properties

• Target users & evaluation methods

KEY CONTRIBUTIONS

WYSIWYM User Interface Model:
• Visualization, exploration & authoring

techniques

• Semantic representation data models

• Cross-cutting components

• Mapping between UI elements & semantic

representation data models

RDFaCE:
• Extending WYSIWYG view with

WYSIWYM for semantic content authoring

• Combining NLP services for automatic

content annotation

conTEXT:
• Lightweight text analytics using

visualization & exploration of semantic

content

• Employing user feedback for NLP

enhancement

• Utilizing semantic annotations for SEO

SlideWiki:
• WikiApp data model

• Collaborative authoring of semi-structured

e-learning material

Pharmer:
• Semantic medical prescriptions

Figure 1.2.: Summary of research questions and key contributions.

• RQ1.2. What types of user interfaces are used by each approach?
• RQ1.3. What are the features supported by the proposed user interfaces?
• RQ1.4. What types of users are targeted in each approach?
• RQ1.5. How is the user interface evaluated?

To answer these research questions, we followed a formal systematic literature
review process which is discussed in Chapter 3. As a result, we first specify a
terminology to define and unify the basic concepts used in the literature. To answer
the RQ1.1, we classified existing approaches for SCA into two categories namely
Top-Down and Bottom-Up. Furthermore, our data analysis revealed a set of quality
attributes for SCA systems together with the corresponding user interface features
which are suggested for their realization. These quality attributes plus the UI
features are used to answer the RQ1.2 and RQ1.3. In order to answer RQ1.4 and
RQ1.5, we extracted the types of users as well as user evaluation methods discussed
in the primary studies.

6

1.3. Research Questions and Contributions

RQ2. How can we bind user interface elements to semantic representation
data models?

By answering this research question, we aim to provide a standardized semantics-
based user interface model which is derived by means of bindings between existing
semantic representation data model elements and configurations of particular UI
elements. The model serves the purpose of providing a terminology for software
engineers and UI designers to communicate efficiently and effectively thereby
designing and implementing novel applications for authoring, visualization, and
exploration of semantic content.

To answer this research question, we devised the WYSIWYM (What-You-See-
Is-What-You-Mean) concept and formalized key components of this concept in
Chapter 4. The key components included a list of existing UI elements and
techniques for content visualization, exploration and authoring, an analysis of
existing semantic representation data models, a set of bindings between UI elements
and semantic models as well as cross-cutting components to facilitate authoring of
semantic content.

RQ3. How can we integrate semantic content authoring features into the
current authoring tools on the Social Web?

By answering this research question, we aim to promote the practice of semantic
content authoring among Social Web users with minimum additional efforts. In-
stead of inventing new authoring tools, we plan to enrich existing content editors
with facilities for authoring of semantic content.

To answer this research question, we proposed an approach called RDFaCE
in Chapter 5. RDFaCE extends the current What You See Is What You Get
(WYSIWYG) editors with standard WYSIWYM UI elements therefore enabling
semantic content authoring in current Social Web platforms such as Content
Management Systems (CMSs), Weblogs and Wikis. In order to facilitate semantic
content authoring, we propose to utilize a combination of existing NLP services
for automatic content annotation.

RQ4. How can we exploit semantically-enriched content for content
analysis?

By answering this research question, we aim to create a lightweight text analytics
architecture of participation based on the semantically enriched content. This
allows end-users to exploit Linked Data for analyzing and visualizing their content,
be it a Weblog, Twitter or Facebook feed, Website or any article collection.

To answer this research question in Chapter 6, we created a lightweight text
analytics platform called conTEXT which provides different analytics views on
semantic content by utilizing our WYSIWYM user interface model. Within this
research question, we also examined the following sub-question:

7

1. Introduction

• RQ4.1. Can we utilize semantic content benefits to incentivize users con-
tributing to the process of manual semantic content authoring?

Coupling rich views for text analytics to the UIs for semantic content authoring
would encourage users to participate in the process of semantic content authoring.
As an instant gratification, in conTEXT, we give users direct feedback on what
information can be extracted from their works. At the same time we want to incor-
porate their feedback and revisions of the semantic annotations back in the NLP
processing loop. As another user incentive, in conTEXT, we provided mechanisms
to exploit semantically-enriched content for Search Engine Optimization (SEO).

RQ5. How can we apply crowdsourcing & collaborative content authoring
techniques to the process of semantic content authoring?

By answering this research question, we aim to create a mechanism to enable
collaborative authoring of (semi-)structured content. The approach is needed to
deal with the increased complexity of the (semi-)structured content as well as the
operations on this content.

To answer this research question, we proposed a data model called WikiApp
together with its implementation SlideWiki in Chapter 7. WikiApp addresses the
collaborative aspects of semantic content authoring and deals with users as its first
class citizen. With SlideWiki, we present a domain-specific use case for creating
highly-structured content for e-learning.

RQ6. How can we apply semantic content authoring to a domain-specific
use case for achieving content interoperability?

By answering this research question, we aim to investigate the adoption of
semantic content authoring in a specific domain having content interoperability as
its area of focus.

To answer this research question, in Chapter 8, we created a customized appli-
cation called Pharmer which enables authoring of semantic medical prescriptions
using Linked Open Drug Data (LODD). Semantic prescriptions provide interoper-
ability between patients, physicians, pharmacists, pharma companies and insurance
companies.

1.4. Thesis in a Glance

As depicted in Figure 1.3, the chapters and sections of this thesis are arranged
as follows:

Chapter 2 constitutes a basic scientific background on Semantic Web which is
required for the reader to understand the thesis. The chapter starts by defining the
Semantic Web followed by discussing the Resource Description Frameworka (RDF)
as the basic building block of the Semantic Web. Then, it moves to describing

8

1.4. Thesis in a Glance

Ontology concept, different types of ontologies and Schema.org as an example of
lightweight ontology. The SPARQL Protocol and RDF Query Language (SPARQL)
is then explained as a means to query the web of data. The chapter also includes
a short overview on Triplestore as a technology to store RDF data as well as NLP
Interchange Format (NIF) to deal with interoperability between natural language
processing tools and services.

Chapter 3 provides an overview on the field of SCA. We followed a systematic
literature review approach to survey the existing UIs for SCA. The research protocol
containing the research questions, search strategies, study selection criteria, data
extraction and analysis methods as well as an overview of the included studies are
described in this chapter. We define a terminology for the domain of semantic
content authoring and elaborate on the results of our systematic review. The results
consist of a set of quality attributes together with their corresponding UI types
and features required for SCA systems. The quality attributes include aspects
such as usability, automation, generalizability, collaboration, customizability and
evolvability. Three existing semantic authoring tools are discussed and compared
based on the defined quality attributes. Finally, the chapter concludes by an
overview on open research and technology challenges in the field of semantic
content authoring.

Chapter 4 defines the WYSIWYM UI model for integrated authoring, visualiza-
tion and exploration of unstructured and (semi-)structured content. The chapter
reviews the former use of WYSIWYM term and discusses the existing approaches
for binding UIs to semantic models. In this chapter, we apply the results achieved
in Chapter 3 to present a formal definition of the WYSIWYM concept including
elements such as semantic representation data models, authoring, visualization
and exploration techniques as well as bindings and helper components. The main
contribution of this chapter lies in providing a comprehensive mapping between
existing user interface elements and the elements of semantic representation data
models.

Chapter 5 discusses how WYSIWYM can be integrated into the existing rich text
editors. As a general use case, we present RDFaCE approach and its implementation
which is built on top of the existing WYSIWYG editors to enable semantic content
authoring. RDFaCE provides different views on the semantic content suitable
for different personas involved in the process of semantic content authoring. We
present the automatic content annotation feature which is realized by consuming
NLP services. The chapter contains an extensive evaluation of five NLP services
and proposes an approach for the combination of these NLP services to achieve
superior performance compared to each individual approach. Furthermore, the
chapter covers three use cases of RDFaCE including semantic blogging, data
journalism and search engine optimization. Finally an evaluation of RDFaCE
content authoring environment using a sizable user group and measuring subjective
as well as objective usage characteristics are presented.

Chapter 6 demonstrates how we can employ semantic annotations for providing
lightweight text analytics. This chapter presents another general use case of the

9

Schema.org

1. Introduction

WYSIWYM model which allows ordinary web users to use sophisticated text
analytics – democratizing the NLP usage. In this chapter, we present conTEXT
as a platform for lightweight text analytics. conTEXT provides a flexible text
analytics architecture of participation by innovative combination of different pieces
of web services such as Named Entity Recognition (NER), relation extraction,
sentiment analysis, visualization and exploration. One of the main contributions
of conTEXT is to incentivize users to perform manual content annotation. In this
direction, we discuss how WYSIWYM model in conTEXT can be used to collect
user feedback for refining the automatically generated annotations. The chapter
also includes a usability and usefulness study of conTEXT using a sizable user
group. Finally, the chapter concludes by discussing the main benefits of conTEXT
for users.

Chapter 7 presents a domain-specific use case of WYSIWYM model for collab-
orative authoring of semi-structured e-learning content. In order to deal with
the collaboration and crowdsourcing aspects of content authoring, we propose a
data model called WikiApp as a refinement of traditional Entity-Relation (ER)
data model. Definition of the WikiApp data model together with an approach for
model-driven generation of WikiApp implementations are discussed in this chapter.
In this chapter, we also present an application called SlideWiki. SlideWiki employs
the WikiApp data model together with the WYSIWYM interface for collaborative
authoring of educational material – crowdlearning. Two use cases of SlideWiki as
a platform for OpenCourseWare authoring and as a platform for elicitation and
sharing of corporate knowledge are presented in this chapter. The chapter also
elaborates on different features of SlideWiki and provides a usability evaluation of
the platform.

Chapter 8 demonstrates another domain-specific use case of the WYSIWYM
model. In this chapter, we define the concept of Semantic Medical Prescriptions
as intelligent and interoperable medical prescriptions, which are achieved by
utilizing semantic annotations. Pharmer as a WYSIWYM implementation to
create semantic prescriptions is then presented. Pharmer follows the RDFaCE
approach discussed in Chapter 5 with minor customization for the e-health domain
(e.g. real-time drug tagging and adverse drug interaction finder). We discuss the
Pharmer architecture as well two possible use cases of Pharmer in this chapter.
The chapter also includes an example scenario together with the results of our
usability evaluation.

Finally, Chapter 9 concludes with a discussion of the contributions of the thesis
and proposes future work for each of them.

10

1.4.
T

h
esis

in
a

G
lan

ce

Systematic Review of Literature on

“Semantic Content Authoring User

Interfaces”

RDFaCE

- Approaches for Semantic Content

Authoring (SCA)

- A set of UI types & properties for

creating efficient SCA systems

WYSIWYM

User Interface Model

from WYSIWYG

to WYSIWYM

WYSIWYM for

Lightweight Text Analytics

WYSIWYM for

Authoring of E-Learning

Content

WYSIWYM for

Authoring of Semantic

Medical Prescriptions

- Bindings between semantic representation

data models & UI elements for content

visualization, exploration & authoring

Pharmer

conTEXT

SlideWiki

Chapter 3 Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

guides

domain-specific

use case

extending existing UIs

dealing with collaborative

(semi-)structured content authoring

in a domain-specific use case

- WikiApp data model

- Crowdlearning

- Different views for content

authoring

- Combining NLP services for

automatic content annotation

- Text analytics based on

Linked Data services

- Incorporating user feedback

for NLP

Chapter Research artifact(s)

- Intelligent & Interoperable

medical prescriptions

Application

Step Association

semantic content

exploration & instant

user gratification

Figure 1.3.: Overview of the chapters together with their corresponding research & application artifacts.

11

Chapter 2

Semantic Web Technologies

“The meaning of things lies not in the things
themselves, but in our attitude towards them.”

— Antoine de Saint-Exupery

This chapter provides the background knowledge required for understanding
the contribution of this work. It gives a general overview of the Semantic Web by
describing basic concepts such as the RDF serialization formats, the ontology and
its languages in detail. This chapter is mainly based on [Yu, 2007]1.

The rest of the chapter is organized as follows: In Section 2.1, we define Semantic
Web. In Section 2.2, we describe RDF data model as the basic building block for
the Semantic Web. In Section 2.2.1, Section 2.2.2 and Section 2.2.3 we describe the
basic elements of RDF in more detail. In Section 2.2.4, we introduce some RDF
serialization formats. In Section 2.3, we define the term Ontology, its classification
as well as Schema.org as an example of lightweight ontology. In Section 2.4, we
describe the SPARQL query language. Section 2.6 explains the use of natural
language processing on the Semantic Web. Finally, in Section 2.5, we shortly
explain triplestores.

2.1. The Definition of Semantic Web

There are many different definitions of the Semantic Web. Tim Berners-Lee,
the inventor of the World Wide Web, defined it as “not a separate Web but an
extension of the current one, in which information is given well-defined meaning,
better enabling computers and people to work in cooperation.” [Berners-Lee et al.,
2001] In other words, Semantic Web allows the machines not only to present data
but also to process it. The Semantic Web is a “Web of data”. Pieces of well-defined
data are interlinked to form a global Web, as an extension to the current Web of
documents, using the same basic technologies and infrastructure.

There is a dedicated team of people at the World Wide Web consortium (W3C)
working to improve, extend and standardize the Semantic Web, and many languages,
publications, tools have already been developed (e.g. [Tramp et al., 2010, Heino
et al., 2009]). W3C have defined Semantic Web as “the idea of having data on
the Web defined and linked in a way that it can be used by machines not just for
display purposes, but for automation, integration, and reuse of data across various

1Standard components of the Semantic Web and definitions for them were taken from the
book as they are following the defined standards and are widely used. Examples for each
component are provided by the author.

12

2.2. Resource Description Framework (RDF)

Figure 2.1.: Semantic Web technology stack.

applications.” [W3C, 2009] In other words, Semantic Web is the machine-readable
Web. Semantic Web can be thought of as an efficient way of representing the data
on the World Wide Web, or as a globally linked database.

As depicted in Figure 2.1, Semantic Web depends on several technologies includ-
ing RDF and URIs. In the following sections we describe each of these technologies
in details.

2.2. Resource Description Framework (RDF)

RDF is an XML-based language for describing information contained in a Web
resource. This Web resource can be anything, for example a Web page or a Website.
RDF is the basic building block for supporting the Semantic Web, and is same as
HTML is for the conventional Web.

The properties of RDF are:

• RDF is a language recommended by W3C [W3C, 2004] and it is all about
metadata,

• RDF is capable of describing any fact (resource) independent of any domain,

• RDF provides a basis for coding, exchanging, and reusing structured meta-
data,

• RDF is structured; i.e. it is machine-understandable. Machines can do useful
operations with the knowledge expressed in RDF,

13

2. Semantic Web Technologies

• RDF allows interoperability among applications exchanging machine under-
standable information on the Web.

RDF has several basic elements, namely Resource, Property and Statement,
which are discussed in the following subsections.

2.2.1. Resource

A resource is any thing that is described by an RDF expressions. The resource
can be a Website, a person, an ubiquitous device or anything else. Resource is
identified by a URI. The rationale of using URIs is that the name of a resource
must be globally unique.

In fact, Uniform Resource Locators, commonly used for accessing Web sites,
are simply a subset of URIs. URIs take the same format as URLs, e.g. http:

//aksw.org/AliKhalili. The main reason behind this is that the domain name
used in the URL is guaranteed to be unique, therefore the uniqueness of the
resource is ensured. In that case the domain name is used as a namespace. Unlike
URLs, URIs may or may not refer to an actual Website or a Web page.

2.2.2. Property

Property is a resource that has a name and can also be used to describe some
specific aspect, characteristic, attribute or relation of the given resource. For
instance, http://xmlns.com/foaf/0.1/name, denotes the name of some thing.
In other words, this property relates a resource representing a thing to its name.

http://aksw.org/AliKhalili

http://aksw.org/Projects/RDFaCE “Ali Khalili”@en

http://xmlns.com/foaf/0.1/namehttp://xmlns.com/foaf/0.1/currentProject

Figure 2.2.: RDF statement represented as a directed graph.

2.2.3. Statement

An RDF Statement is used to describe properties of resources. It is also called
a triple and has the following format

<resource (subject)> <property (predicate)> <property value (object)>.
The property value (object) can be a string, literal or another resource referenced
by the URI. For example:
<http://aksw.org/AliKhalili>

14

http://aksw.org/AliKhalili
http://aksw.org/AliKhalili
http://xmlns.com/foaf/0.1/name
http://aksw.org/AliKhalili

2.2. Resource Description Framework (RDF)

<http://xmlns.com/foaf/0.1/currentProject>
<http://aksw.org/Projects/RDFaCE>.

This RDF statement simply states that “The subject identified by http://

aksw.org/AliKhalili has a property identified by http://xmlns.com/foaf/0.

1/currentProject, whose value is equal to http://aksw.org/Projects/RDFaCE”.
This means that person “Ali Khalili” has a “currentProject” which is “RDFaCE”.

In fact, RDF statements can also be expressed as directed graphs, as shown in
Figure 2.2.

It is worth pointing out here that the subject or the object or both can be
an anonymous resource, called a ”blank node”. Blank nodes are used basically
when the key purpose of a specific resource is to provide a context for some other
properties to appear. In order to distinguish a blank node from the others, the
RDF parser generates an internal unique identifier for each blank node. In other
words, this identifier given to the blank node helps in identifying the node in a
certain RDF document, whereas the URI given to a resource is guaranteed to be
globally unique.

Since URIs can be large, there is a short format for writing them i.e. by using
a prefix. For instance, if we use http://aksw.org/ as a prefix and give it a
label e.g. aksw, then resource http://aksw.org/AliKhalili can be written as
aksw:AliKhalili. Similarly, if http://xmlns.com/foaf/0.1/ is used as a pre-
fix with label foaf, then the properties http://xmlns.com/foaf/0.1/name and
http://xmlns.com/foaf/0.1/currentProject, can be written as foaf:name

and foaf:currentProject in short form. This format is very useful in writ-
ing human-readable RDF statements.

Whenever more triples describing a specific resource are added, the machine
gets more knowledge about that resource. Table 2.1 shows more RDF statements
about Ali Khalili. This means that the resource of Ali Khalili is the subject of
other statements, which give more details about that resource. Note that the
object of a particular statement can be in turn the subject of other statement(s),
e.g. Ali Khalili has a current project identified by URI akswProject:RDFaCE and
the knowledge base contains more information about that project as well. Also,
note that the object of the second and fifth statement (a number and a date) has
a trailing datatype. This small knowledge base can also be viewed as a directed
graph as shown in Figure 2.3.

Using these simple RDF statements you can pose complex queries to the machine,
e.g. ”What is the homepage of Ali Khalili’s current project?”.

2.2.4. RDF Serialization Formats

Serializing RDF data is a very crucial issue since different platforms and en-
vironments work better with different data formats. There are already several
formats such as RDF/XML, Turtle, N-Triples, Notation3, N-Quads and JSON-LD
for serializing RDF data. There are also formats such as RDFa and Microdata to

15

http://xmlns.com/foaf/0.1/currentProject
http://aksw.org/Projects/RDFaCE
http://aksw.org/AliKhalili
http://aksw.org/AliKhalili
http://xmlns.com/foaf/0.1/currentProject
http://xmlns.com/foaf/0.1/currentProject
http://aksw.org/Projects/RDFaCE
http://aksw.org/
http://aksw.org/AliKhalili
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/name
http://xmlns.com/foaf/0.1/currentProject

2. Semantic Web Technologies

Subject Predicate Object

aksw:AliKhalili rdf:type foaf:Person

aksw:AliKhalili foaf:age "30"^^xsd:int

aksw:AliKhalili foaf:skypeID "alii.khalilii"

aksw:AliKhalili foaf:birthday "1984-06-26"^^xsd:date

aksw:AliKhalili foaf:name "Ali Khalili"@en

aksw:AliKhalili foaf:currentProject akswProject:RDFaCE

akswProject:RDFaCE foaf:homepage <http://rdface.aksw.org>

Table 2.1.: Sample RDF statements.

aksw:AliKhalili

“alii.khalilii” foaf:Person

akswProject:RDFaCE

http://rdface.aksw.org

“Ali Khalili”@en

“1984-06-26”^^xsd:date

foaf:birthday
foaf:homepage

foaf:currentProject

foaf:skypeID foaf:type

foaf:name

Resource String Literal

Figure 2.3.: Small knowledge base about Ali Khalili represented as a graph.

embed RDF data within HTML documents by offering additional HTML attributes.
In the sequel, we explain the main serialization formats used in this thesis:

RDF/XML

RDF/XML represents RDF triples in XML format [Beckett, 2004]. The RD-
F/XML format is convenient for machines since the traditional XML format is
commonly adopted and there are a variety of libraries available that simplify
interaction with this format. Figure 2.4 shows our RDF example in RDF/XML
format.

16

2.2. Resource Description Framework (RDF)

1 <rdf:RDF xmlns:log="http://www.w3.org/2000/10/swap/log#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

2 <rdf:Description rdf:about="http://aksw.org/Projects/RDFaCE">

3 <homepage xmlns="http://xmlns.com/foaf/0.1/" rdf:resource="http://rdface.aksw.org"/>

4 </rdf:Description>

5

6 <Person xmlns="http://xmlns.com/foaf/0.1/" rdf:about="http://aksw.org/AliKhalili">

7 <currentProject rdf:resource="http://aksw.org/Projects/RDFaCE"/>

8 <birthday rdf:datatype="http://www.w3.org/2001/XMLSchema#date">1984-06-26</deathDate>

9 <age rdf:datatype="http://www.w3.org/2001/XMLSchema#int">30</age>

10 <skypeID xmlns="http://dbpedia.org/property/" xml:lang="en">alii.khalilii</skypeID>

11 <name xmlns="http://dbpedia.org/property/" xml:lang="en">Ali Khalili</name>

12 </Person>

13 </rdf:RDF>

Figure 2.4.: Sample RDF/XML format.

1 @prefix aksw: <http://aksw.org/> .

2 @prefix akswProject: <http://aksw.org/Projects/> .

3 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

5

6 aksw:AliKhalili a foaf:Person;

7 foaf:age "30"^^xsd:int;

8 foaf:currentProject akswProject:RDFaCE;

9 foaf:birthday "1984-06-26"^^xsd:date;

10 foaf:skypeID "alii.khalilii";

11 foaf:name "Ali Khalili"@en .

12

13 akswProject:RDFaCE foaf:homepage <http://rdface.aksw.org> .

Figure 2.5.: Sample N3 format.

N3

N3 stands for Notation3 and is a shorthand notation for representing RDF graphs.
N3 was designed to be easily read by humans and it is not an XML-compliant
language [Berners-Lee and Connolly, 2011]. Figure 2.5 shows our RDF example in
N3 format.

JSON-LD

JSON-LD2 is a JSON-based format to serialize RDF and Linked Data (LD). It
is designed to easily integrate into deployed systems that already use JavaScript
Object Notation (JSON), and provides a smooth upgrade path from JSON to
JSON-LD. JSON-LD specifies a number of syntax tokens and keywords. The main
keywords include:

• @context - Used to define the short-hand names that are used throughout
a JSON-LD document. These shorthand names are called terms and help
developers to express specific identifiers in a compact manner.

2http://www.w3.org/TR/json-ld/

17

http://www.w3.org/TR/json-ld/

2. Semantic Web Technologies

1 {
2 "@graph": [

3 {
4 "@id": "http://aksw.org/Projects/RDFaCE",

5 "http://xmlns.com/foaf/0.1/homepage": {
6 "@id": "http://rdface.aksw.org"

7 }
8 },
9 {

10 "@id": "http://aksw.org/AliKhalili",

11 "@type": "http://xmlns.com/foaf/0.1/Person",

12 "http://xmlns.com/foaf/0.1/age": {
13 "@type": "http://www.w3.org/2001/XMLSchema#int",

14 "@value": "30"

15 },
16 "http://xmlns.com/foaf/0.1/birthday": {
17 "@type": "http://www.w3.org/2001/XMLSchema#date",

18 "@value": "1984-06-26"

19 },
20 "http://xmlns.com/foaf/0.1/currentProject": {
21 "@id": "http://aksw.org/Projects/RDFaCE"

22 },
23 "http://xmlns.com/foaf/0.1/name": {
24 "@language": "en",

25 "@value": "Ali Khalili"

26 },
27 "http://xmlns.com/foaf/0.1/skypeID": "alii.khalilii"

28 }
29]

30 }

Figure 2.6.: Sample JSON-LD format.

• @id - Used to uniquely identify things that are being described in the
document with Internationalized Resource Identifiers (IRIs) or blank node
identifiers.

• @value - Used to specify the data that is associated with a particular
property in the graph.

• @language - Used to specify the language for a particular string value or
the default language of a JSON-LD document.

• @type - Used to set the data type of a node or typed value.

Figure 2.6 shows our RDF example in JSON-LD format

RDFa

Resource Description Framework in Attributes (RDFa)3 is a W3C Recommenda-
tion that adds a set of attribute level extensions to XHTML for embedding RDF
metadata within Web documents. RDFa provides the following set of attributes:

• about – a URI or Compact URI (CURIE) specifying the resource the

3http://www.w3.org/TR/rdfa-syntax/

18

http://www.w3.org/TR/rdfa-syntax/

2.2. Resource Description Framework (RDF)

1 <div vocab="http://schema.org/" typeof="Person">

2 <b property="name">Ali Khalili

3

4 PhD Student

5 <div property="address" typeof="PostalAddress">

6

7 Augustusplatz 10

8

9 Leipzig

10 Germany

11 04109

12 </div>

13 (0049)341-97-32329

14 Ali’s home page:

15

16 ali1k.com

17

18 </div>

Figure 2.7.: Sample RDFa format.

metadata is about.
• rel and rev – specifying a relationship and reverse-relationship with another

resource, respectively.
• src, href and resource – specifying the partner resource.
• property – specifying a property for the content of an element or the partner

resource.
• content – optional attribute that overrides the content of the element when

using the property attribute.
• datatype – optional attribute that specifies the datatype of text specified

for use with the property attribute.
• typeof – optional attribute that specifies the RDF type(s) of the subject or

the partner resource (the resource that the metadata is about).

Figure 2.7 shows an example of RDFa annotation.

Microdata

Microdata4 is an HTML5 specification used to nest semantics within existing
content on Web pages. It provide the following set of attributes:

• itemscope – Creates the Item and indicates that descendants of this element
contain information about it.

• itemtype – A valid URL of a vocabulary that describes the item and its
properties context.

• itemid – Indicates a unique identifier of the item.
• itemprop – Indicates that its containing tag holds the value of the specified

item property. The properties name and value context are described by the

4http://www.w3.org/TR/microdata/

19

http://www.w3.org/TR/microdata/

2. Semantic Web Technologies

1 <div itemscope itemtype="http://schema.org/Person">

2 <b itemprop="name">Ali Khalili

3

4 PhD Student

5 <div itemprop="address" itemscope itemtype="http://schema.org/PostalAddress">

6

7 Augustusplatz 10

8

9 Leipzig

10 Germany

11 04109

12 </div>

13 (0049)341-97-32329

14 Ali’s home page:

15

16 ali1k.com

17

18 </div>

Figure 2.8.: Sample Microdata format.

items vocabulary. Properties values usually consist of string values, but can
also use URLs using the a element and its href attribute, the img element
and its src attribute, or other elements that link to or embed external
resources.

• itemref – Properties that are not descendants of the element with the
itemscope attribute can be associated with the item using this attribute.
It provides a list of element ids (not itemids) with additional properties
elsewhere in the document.

Figure 2.8 shows an example of Microdata annotation.

2.3. Ontology

W3C defines an ontology as “the terms used to describe and represent an area
of knowledge.” [Heflin, 2004].

This definition has several aspects that should be discussed. First, the definition
states that an ontology is used to describe and represent an area of knowledge. In
other words, an ontology is domain specific; it does not represents all knowledge
areas, but one specific area of knowledge. A domain is simply a specific subject
area or sphere of knowledge, such as literature, medicine, education, etc.

Second, the ontology contains terms and relationships among those terms.
Terms are also called classes, or concepts; these words are interchangeable. The
relationships between these classes can be expressed by using a hierarchy, i.e.
superclasses represent higher-level concepts and subclasses represent finer concepts.
The finer concepts have all the attributes and features that the higher concepts
have.

Third, in addition to the aforementioned relationships among classes, there is

20

2.3. Ontology

Person

Athlete Artist...

SoccerPlayer ... TennisPlayer Actor Writer...

Work

MusicalWorkBook ...

author

Subclass Superclass

Property :

Figure 2.9.: Excerpt of the DBpedia ontology.

another level of relationship expressed by using a special group of terms called
properties. These property terms describe various features and attributes of the
concepts and they can also be used to associate different classes together. Thus,
the relationships among classes are not only superclass or subclass relationships,
but relationships expressed in terms of properties as well.

In other words, an ontology defines a set of classes (e.g. “Person”, “Book”,
“Writer”), and their hierarchy, i.e. which class is a subclass of another one (e.g.
“Writer” is a subclass of “Person”). The ontology also defines how these classes
interact with each other, i.e. how different classes are connected to each other via
properties (e.g. a “Book” has an author of type “Writer”).

Figure 2.9 shows an excerpt of the ontology representing DBpedia5. This ontology
shows that there is a class called “Writer” which is a subclass of the class “Artist”,
which in turn a subclass of “Person”. William Shakespeare, Johann Wolfgang von
Goethe, and Dan Brown are candidate instances of the class “Writer”. The same
applies to the class “Work” and its subclasses. Note that there is a property called
“author” relating an instance of class “Work” to an instance of the class “Person”
i.e. it relates a work to its author. For instance, the book titled “First Folio” is
an instance of classes “Work” and “Book”, and related via property “author” to
its author “William Shakespeare”, which is an instance of the classes “Person”,
“Artist” and “Writer”.

So, why do we need ontologies? The main benefits of an ontology are:

• it provides a common and shared understanding/definition about certain key
concepts in the domain,

• it provides a way for reuse of domain knowledge,

• it makes the domain assumptions explicit,

5http://dbpedia.org/

21

2. Semantic Web Technologies

Figure 2.10.: Level of expressiveness of ontologies (source:[Schaffert, 2006]).

• it provides a way to encode knowledge and semantics such that machines
can understand it.

2.3.1. Ontology Classification

There are various types of ontologies differing in multiple aspects. [Schaffert,
2006] has classified ontologies along three dimensions: model scope, level of
expressiveness and model acceptance. The model scope refers to the area or
coverage that is of interest. The acceptance dimension deals with the target
communities of the application and its knowledge model and various methods of
building consensus within a specific community. The level of expressiveness is
particularly significant and is briefly described below.

Level of expressiveness (Light-weight and Heavy-weight ontologies). The
spectrum of expressiveness of ontologies is illustrated in Figure 2.10. There are
two main groups – lightweight ontologies and heavyweight ontologies. Based on
the their level of expressiveness, eight sub categories are defined:

1. A term list or controlled vocabulary contains a list of keywords. Such lists
are typically used to restrict possible values for properties of some kind of
instance data in the domain.

2. A thesaurus also defines relations between terms, e.g. proximity of terms.

3. An informal taxonomy defines an explicit hierarchy of generalization and
specialization, but there is no strict inheritance, i.e. an instance of a sub-class
is not necessarily also an instance of the super-class.

22

2.3. Ontology

4. A formal taxonomy defines a strict inheritance hierarchy.

5. A frame or class/property based ontology is similar to object-oriented models.
A class is defined by its position in the subclass hierarchy and its properties.
Properties are inherited by sub-classes and realized in instances.

6. A range value restriction defines, in addition, restrictions for the defined
properties. The restrictions may be data type or domain restrictions.

7. By using limited logic constraints, property values may be further restricted.

8. A very expressive ontology often use first-order logic constraints. These con-
straints may include disjoint classes, disjoint coverings, inverse relationships,
part-whole relationships, etc.

2.3.2. Schema.org

With heavy semantics, powerful reasoning can be done, however such systems
cannot tolerate any inconsistency. On the other hand, with lightweight ontologies
not much reasoning can be done. However, there is far less risk of inconsistencies
because only little ontological agreements are in place. With little semantics,
applications can scale very well. This is a significant aspect when we consider
the huge scale of the web, which is important for the practical realization of the
Semantic Web vision. Therefore, lightweight ontologies have become more popular
and widespread. Schema.org as an example of such lightweight ontologies has
gained attention in recent years.
Schema.org is an effort initiated by the popular search engines Bing, Google and

Yahoo! on June 2011 to define a broad, Web-scale and shared vocabulary focusing
on popular concepts. It stakes a position as a lightweight middle ontology that
does not attempt to have the scope of an ontology of everything or go into depth
in any one area. A central goal of having such a broad schema all in one place is to
simplify things for mass adoption and cover the most common use cases [Ronallo,
2012]. Schema.org vocabulary can be used along with the Microdata, RDFa, or
JSON-LD formats to add information to HTML Web pages (cf. Figure 2.7 and
Figure 2.8).

The broadest item type in Schema.org is Thing, which has four properties:
name, description, url, and image. More specific types share properties with
broader types. For example, a Place is a more specific type of Thing, and a
LocalBusiness is a more specific type of Place. More specific items inherit the
properties of their parent. For example, a LocalBusiness is a more specific type
of Place and a more specific type of Organization, so it inherits properties from
both parent types. Figure 2.11 shows LocalBusiness schema and its properties
on Schema.org.

23

Schema.org
Schema.org
Schema.org
Schema.org
Schema.org

2. Semantic Web Technologies

Thing > Place > LocalBusiness
A particular physical business or branch of an organization. Examples of LocalBusiness include a restaurant, a particular branch of a restaurant chain, a branch of
a bank, a medical practice, a club, a bowling alley, etc.

Property Expected Type Description

Properties from LocalBusiness

branchOf Organization The larger organization that this local business is a branch of, if any.

currenciesAccepted Text The currency accepted (in ISO 4217 currency format).

openingHours

Duration The opening hours for a business. Opening hours can be specified as a weekly time
range, starting with days, then times per day. Multiple days can be listed with commas ','
separating each day. Day or time ranges are specified using a hyphen '-'.
- Days are specified using the following two-letter combinations: Mo, Tu, We, Th, Fr, Sa,
Su.
- Times are specified using 24:00 time. For example, 3pm is specified as 15:00.
- Here is an example: <time itemprop="openingHours" datetime="Tu,Th
16:00-20:00">Tuesdays and Thursdays 4-8pm</time>.
- If a business is open 7 days a week, then it can be specified as <time

itemprop="openingHours" datetime="Mo-Su">Monday through Sunday, all

day</time>.

paymentAccepted Text Cash, credit card, etc.

priceRange Text The price range of the business, for example $$$.

Properties from Place

address PostalAddress Physical address of the item.

aggregateRating AggregateRating The overall rating, based on a collection of reviews or ratings, of the item.

containedIn Place The basic containment relation between places.

event Event Upcoming or past event associated with this place or organization. Supercedes events.

faxNumber Text The fax number.

geo GeoCoordinates or The geo coordinates of the place.

LocalBusiness - schema.org http://schema.org/LocalBusiness

1 of 6 6/24/2014 12:21 PM

Figure 2.11.: An example schema (LocalBusiness) from Schema.org.

2.4. SPARQL Query Language

“The SPARQL Protocol and RDF Query Language (SPARQL) is a query
language and protocol for RDF.” [Clark et al., 2008]. SPARQL is a W3C standard
and it is used to ask queries against RDF graphs. SPARQL allows the user to write
queries that consist of triple patterns, conjunctions (logical “and”), disjunctions
(logical “or”) and/or a set of optional patterns [Wikipedia, 2013]. Examples of
these optional patterns are: FILTER, REGEX and LANG.

The SPARQL query specifies the pattern(s) that the resulting data should satisfy.
The results of SPARQL queries can be result sets or RDF graphs. SPARQL has four
query forms, specifically SELECT, CONSTRUCT, ASK and DESCRIBE [Prud’hommeaux
and Seaborne, 2008].

Let us take an example to clarify the usage of SPARQL. Assume that we want
to ask the query “What is the homepage of Ali Khalili’s current project?” to our
small knowledge base. Figure 2.12 shows a SPARQL query to get information
about the homepage of Ali Khalili’s current project.

In Figure 2.12, lines 1 and 2 define prefixes in order to write URIs in their short
forms. Line 3 declares the variables that should be rendered to the output of that
query, which is only one variable ?homepage. Note that SPARQL variables start
either with a question mark “?”, or with a dollar sign “$”. Line 4 states that for the

24

2.5. Triplestore

1 PREFIX aksw: <http://aksw.org/>

2 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

3 SELECT ?homepage

4 WHERE {aksw:AliKhalili foaf:currentProject ?project.

5 ?project foaf:homepage ?homepage. }

Figure 2.12.: SPARQL query to get the homepage of Ali Khalili’s current project.

statement with subject aksw:AliKhalili and property foaf:currentProject, we
want the value of its object to be assigned to a variable called ?project. Upon exe-
cution, this variable will take the value of akswProject:RDFaCE. In line 5, we want
variable ?project which now has the value akswProject:RDFaCE, to be the subject
of the next statement. In other words, the statement will be akswProject:RDFaCE

foaf:homepage ?homepage. Now, variable ?homepage is the only unknown variable
of the statement, and it will take the value http://rdface.aksw.org. Eventually,
its value will be rendered to the output.

2.5. Triplestore

The crucial question here is “How do we store RDF data for efficient and
quick access?”. Basically, RDF data is stored in triplestores. A triplestore is a
software program capable of storing and indexing RDF data efficiently, in order to
enable querying this data easily and effectively. A triplestore for RDF data is like
Relational Database Management System (RDBMS) for relational databases.

Most triplestores support SPARQL query language for querying RDF data. As
there are several RDBMSs in the wild, such as Oracle6, MySQL7 and SQL Server8,
similarly there are several triplestores. Virtuoso [Erling and Mikhailov, 2007],
Sesame [Broekstra et al., 2002] and BigOWLIM [Bishop et al., 2011] are typical
examples of triplestores for desktop and server computers. DBpedia, for example,
uses Virtuoso as the underlying triplestore.

2.6. Natural Language Processing on the Semantic
Web

Natural Language Processing (NLP) and information extraction services usually
deal with tasks such as Named Entity Recognition (NER), Keyword Extraction
(KE), Automatic Term Recognition (ATR), Wikification (WKF), Entity Link-
ing (EL), language detection, Part-Of-Speech (POS) tagging, text classification,
morphological analysis, relation extraction, sentiment analysis, etc.

6http://www.oracle.com/us/products/database/overview/index.html
7http://www.mysql.com
8http://www.microsoft.com/en-us/sqlserver/default.aspx

25

http://www.oracle.com/us/products/database/overview/index.html
http://www.mysql.com
http://www.microsoft.com/en-us/sqlserver/default.aspx

2. Semantic Web Technologies

Figure 2.13.: Examples of information extraction subtasks (source:[Mendes, 2013]).

As shown in Figure 2.13, the main information extraction subtasks include[Mendes,
2013]:

• NER. Inserting tags into the text to mark each string that represents a
person, organization, or location name, or a date or time stamp, or a currency
or percentage figure.

• KE. Extracting the significant phrases from a document or collection of
documents.

• ATR. Discovering phrases which are significant for a given domain (e.g. in
technical documents, or documents with focus on a particular domain).

• WKF. Automatically marking up phrases with links to Wikipedia pages that
describe those phrases.

• EL. Associating entity mentions recognized in text with their corresponding
identifiers in a Knowledge Base (KB). The input of the task is an entity
name and an example document where that name was used. The output is

26

2.6. Natural Language Processing on the Semantic Web

Figure 2.14.: An example of NIF integration (source:[Hellmann et al., 2013]).

an entity identifier for the referent of that mention in the KB.

Many NLP tasks can greatly benefit from making use of the Semantic Web
technologies and the wealth of knowledge being available in structured form. NLP
Interchange Format (NIF) [Hellmann et al., 2013]9 is an RDF/Web Ontology
Language (OWL)-based format that aims to achieve interoperability between NLP
tools, language resources and annotations. NIF addresses the interoperability
problem on three layers: the structural, conceptual and access layer. NIF is based
on a LD enabled URI scheme for identifying elements in (hyper-)texts (structural
layer) and a comprehensive ontology for describing common NLP terms and
concepts (conceptual layer). NIF-aware applications produce output (and possibly
also consume input) adhering to the NIF Core ontology as REST services (access
layer). NIF can be used for import and export of data from and to NLP tools and
services. As shown in Figure 2.14, based on the normalization and tokenization,
the combined RDF of several NLP tools merges naturally based on the subject
URIs.

9http://persistence.uni-leipzig.org/nlp2rdf/

27

http://persistence.uni-leipzig.org/nlp2rdf/

Chapter 3

Concepts and State of the Art

“A successful man is one who can lay a firm
foundation with the bricks others have thrown
at him.” — David Brinkley

In this chapter, we provide an overview on the rapidly emerging field of Semantic
Content Authoring (SCA). We conducted a systematic literature review comprising
a thorough analysis of 31 primary studies out of 175 initially retrieved papers
addressing the semantic authoring of textual content. We obtained a comprehensive
set of quality attributes for SCA systems together with corresponding UI features
suggested for their realization. The quality attributes include aspects such as us-
ability, automation, generalizability, collaboration, customizability and evolvability.
The primary studies were surveyed in the light of these quality attributes and
we performed a thorough analysis of three SCA systems. The proposed quality
attributes and UI features facilitate the evaluation of existing approaches and the
development of novel more effective and intuitive semantic authoring interfaces.

The rest of this chapter is organized as follows: In Section 3.1 we describe
the research method and the review protocol used for conducting the systematic
review. In Section 3.2 we define the terminology of the investigated domain then we
elaborate on the results of the review by surveying the extracted quality attributes
in Section 3.4. In Section 3.8 we discuss three existing semantic authoring tools
and describe them in the light of the quality attributes. In Section 3.9 we report
on the gaps and open research issues revealed from the results of our systematic
literature review. Finally in Section 3.10 we conclude the chapter.1

3.1. Research Method

We followed a formal systematic literature review process for this study based
on the guidelines proposed in [Dyba et al., 2007, Kitchenham, 2004]. A systematic
literature review is an evidence-based approach to thoroughly search studies
relevant to some pre-defined research questions and critically select, appraise,
and synthesize findings for answering the research questions at hand. Systematic
reviews maximize the chance to retrieve complete data sets and minimize the
chance of bias. As part of the review process, we developed a protocol (described
in the sequel) that provides a plan for the review in terms of the method to be
followed, including the research questions and the data to be extracted.

1The contents of this chapter have been published as [Khalili and Auer, 2013a].

28

3.1. Research Method

3.1.1. Research Questions

The goal of our survey is analyzing existing user interfaces for semantic content
authoring and thereby providing a set of quality attributes, which can serve as
guidelines for designing suitable and effective user interfaces for semantic content
authoring. To achieve this goal we aim to answer the research question RQ1 (cf.
Section 1.3):

What are existing approaches for user-friendly semantic content authoring?
We divide this general research question into the following more concrete sub-

questions:

• RQ1.1. How to classify existing approaches for semantic content authoring?

• RQ1.2. What types of user interfaces are used by each approach?

• RQ1.3. What are the features supported by the proposed user interfaces?

• RQ1.4. What types of users are targeted in each approach?

• RQ1.5. How is the user interface evaluated?

After doing some pilot searches and consulting experts in the field, we obtained
a list of pilot studies that served as a basis for the systematic review.

3.1.2. Search Strategy

To cover all the relevant publications, we used the following electronic libraries:

• ACM Digital Library

• IEEE Xplore Digital Library

• ScienceDirect

• SpringerLink

• ISI Web of Sciences

Based on the research question and pilot studies, we found the following basic
terms to be most appropriate for the systematic review:

1. semantic OR linked data OR web of data OR data web

2. content OR web page OR document

3. authoring OR annotating OR annotation OR annotate OR enrich OR edit

To construct the search string, all these search terms were combined using
Boolean “AND” as follows:

1 AND 2 AND 3

29

3. Concepts and State of the Art

ACM Digital

Library

IEEE Xplore

Digital Library

ScienceDirect

SpringerLink

ISI Web of Sciences

326
115

107

330

555

175 3170

 S
c

a
n

n
in

g
 th

e
 title

M
e

rg
in

g
 th

e
 re

s
u

lts

R
e

a
d

in
g

 th
e

 a
b

s
tra

c
t

S
c

a
n

n
in

g
 th

e
 fu

ll-te
x

t

A
d

d
in

g
 e

x
p

e
rts

re
c

o
m

m
e

n
d

e
d

 p
a

p
e

rs

Figure 3.1.: Steps followed to scope the search results.

The next decision was to find the suitable field (i.e. title, abstract and full-text)
to apply the search string on. In our experience, searching in the ‘title’ alone does
not always provide us with all relevant publications. Thus, ‘abstract’ or ‘full-text’
of publications should potentially be included. On the other hand, since the search
on the full-text of studies results in many irrelevant publications, we chose to apply
the search query additionally on the ‘abstract’ of the studies. This means a study
is selected as a candidate study if its title or abstract contains the keywords defined
in the search string. In addition, we limited our search to the publications that are
written in English and are published after 2002 (when the first ISWC conference
was held).

3.1.3. Study Selection

Some of the studies might contain the keywords used in the search string but
might still be irrelevant for our research questions. Therefore, a study selection
has to be performed to include only studies that contain useful information for
answering the research question.

Peer-reviewed articles that satisfy all the following inclusion criteria are selected
as primary studies:

• I1. A study that focuses on semantic content authoring.

• I2. A study that either proposes a user interface or a set of user interface
features for the purpose of semantic content authoring.

Studies that met any of the following criteria were excluded from the review:

• E1. A study that does not focus on semantic content authoring but only
mentions the term e.g. as an example or use case.

• E2. A study that does not propose any user interface or user interface
feature for semantic content authoring but only a generic, non-user interface
supported method, approach or algorithm for semantic annotation.

30

3.1. Research Method

Figure 3.2.: The screenshot of the coding software showing the generated list of
codes from the primary studies.

• E3. A study that is not about Web-based content authoring (e.g. studies
about semantic authoring in word processors like LATEX).

• E4. A study that is only about the ontology creation or ontology annotation
(e.g. using natural language).

• E5. A study that does not discuss textual Web content authoring but other
modalities such as image, audio or video annotation.

We conducted our review in early July 2011. As a consequence, our review
included studies that were published and/or indexed before that date. As shown
in Figure 3.1, we first applied the search query on each data source separately.
Subsequently, to remove duplicate studies, we merged the results obtained from
the different data sources. To remove irrelevant studies, we scanned the articles
by title and thereby reduced the number of studies to 175. Then, we read the
abstract of each publication carefully and further decreased the number of studies
to 70. Finally, we added a list of additional papers recommended by experts and
then scanned the full-text of the publications. We checked the full-text of studies
to see if they fit with our predefined selection criteria. The result comprised 31
publications that represented our final set of primary studies.

31

3. Concepts and State of the Art

3.1.4. Data Extraction and Analysis

The bibliographic metadata about each primary study were recorded using
the bibliography management platform JabRef 2. In addition, we extracted the
following information from each paper:

• The used approach for semantic content authoring.

• The type of user interface.

• The features supported by the user interface.

• The domain and type of user.

• The evaluation method used in the paper.

To analyze the information appropriately, we required a suitable qualitative data
analysis method applicable to our dataset. A common method that is used for this
purpose is the grounded theory method because the theories (the SCA approaches
and UI features) are “grounded” in the data [Glaser and Strauss, 1967].

The Constant Comparison method, one of the grounded theory techniques, has
been often used in analyzing data and generating categories of data. Although
the Constant Comparison method can be used on any set of data, it is particu-
larly suitable for data that is context sensitive [Seaman, 1999] (i.e. data can be
interpreted differently in different contexts). To interpret SCA approaches and UI
features correctly, one often needs to understand in which context the approach and
feature is proposed and how it is addressed. For instance, consider one study that
mentions “evolvability” as a feature for UI. Without understanding the context of
this feature, we cannot conclude whether this feature is about designing evolvable
UIs or about supporting annotation/ontology evolvability in the UI (which is our
aim here).

Miles and Huberman [Miles and Huberman, 1994] described coding as a procedure
for the constant comparison method. Codes are tags or labels for assigning units
of meaning to the descriptive or inferential information compiled during a study.
Codes are efficient data-labeling and data-retrieval devices. One method of creating
codes which is employed in our review is creating a provisional “start-list” of codes
prior to fieldwork. We created this list from our research questions and the pilot
studies. To carry out the analysis systematically, we used the following coding
procedures proposed by Lincoln Guba[Miles and Huberman, 1994]:

• Filling-in: We read each study carefully and added the codes for related
fragments and items. As new insights or new ways of looking at the data
emerged, we reconstructed our coherent coding schema.

• Extension: If needed, we returned to materials coded earlier and interrogated
them in a new way, with a new theme, construct, or relationship.

2http://jabref.sourceforge.net/

32

http://jabref.sourceforge.net/

3.1. Research Method

• Bridging : If new or previously not understood relationships within units of a
given category were found, we recorded that relationship.

• Surfacing : We identified new categories which contained the previously
created codes.

As shown in Figure 3.2, we used the Weft QDA software3 to record the codes.
The final list of codes are available online4.

3.1.5. Overview of Included Studies

For quantitative analysis purposes, we performed some queries on the collected
database of primary studies. The distribution of studies per year as shown in
Figure 3.3 indicates an increasing intensity of research in the area of semantic
content authoring. The remarkable rise after 2008 can be explained with the emer-
gence and adoption of weak semantic techniques (the so-called ‘lowercase’ Semantic
Web), such as the use of Microformats5, RDFa6 and Microdata7. These techniques
facilitate semantic content authoring by embedding semantic annotations into the
HTML Web pages.

Figure 3.3.: Publications per year.

The primary studies included 14 conference papers, 11 journal articles, 4 work-
shop papers, one thesis and one technical report. Among them, the following
four studies are survey papers. Uren et al. [Uren et al., 2006] have reported a
comprehensive review of the studies and applications for semantic annotations
which were published before 2006. In [Heitmann et al., 2009], Heitmann et al.
conducted an empirical survey of Semantic Web applications and have reviewed the
challenges of them. Paulheim and Probst [Paulheim and Probst, 2010] surveyed the

3http://www.pressure.to/qda/
4http://rdface.aksw.org/SLR/codes.qdp
5http://microformats.org/
6http://www.w3.org/TR/rdfa-syntax/
7http://www.w3.org/TR/microdata/

33

http://www.pressure.to/qda/
http://rdface.aksw.org/SLR/codes.qdp
http://microformats.org/
http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/microdata/

3. Concepts and State of the Art

Semantic Computing

Human Computer Interaction

Social Semantic Web

Document

Semantics

S
e

m
a

n
ti

c
 D

o
c

u
m

e
n

t

Semantic Gap

Authoring

User Interface

Sem
antic

 C
onte

nt

Auth
orin

g

S
e

m
a

n
ti

c
 A

n
a

ly
s

is - Processing of natural

 language, multimodal

 content & speech

- Web, Data & Process

 mining

- Semantic link discovery

- Semantic enrichment &

 repair

Users

Interactions

- Designing interfaces

- Implementing interfaces

- Evaluating & comparing

 interfaces

- Descriptive & predictive

 models & theories of

 interaction - Personalization & contextual

 browsing

- Integrated social networks

- Semantic information

 mashups

- Crowdsourcing

- Human-machine synergy

Figure 3.4.: Semantic content authoring ecosystem.

ontology-enhanced user interfaces and have introduced a schema for characterizing
the requirements of ontology-enhanced user interfaces. In [Hachey, 2011], Hachey
and Gaševic provide an overview of the current progress and gaps in the area of
Semantic Web user interfaces in general. Compared to these surveys, the focus and
the coverage range of our survey are different. The goal of our survey is to perform
a systematic analysis of the existing collection of research material addressing the
user interface aspects of Web-based semantic authoring systems. We focus on
semantic authoring of textual content and cover the literature published between
2002 and 2011.

3.2. Terminology

The terminology basis of this chapter is depicted in Figure 3.4. In the sequel we
describe the individual concepts in more detail:

Semantic Gap is a term coined to describe the discrepancy between low-level
technical features of multimedia, which can be automatically processed to a great
extent, and the high-level, meaning-bearing features a user is typically interested
in [Siorpaes and Simperl, 2010]. As discussed in [Chu et al., 2009], semantic gaps in
the process of constructing and managing digital content can be divided into three
types namely human-to-machine, machine-to-machine, and machine-to-human.
In this thesis we mainly focus on the machine-to-machine semantic gaps that
are important when searching or reusing content by machines. In this context,
semantics consists of concepts and their logical relationships in an explicit form.

34

3.2. Terminology

When a machine processes the semantics, the lack of a common vocabulary may
lead to alterations in the original semantics thus resulting in semantic gaps.

Semantic Computing is a research field that addresses the extraction and pro-
cessing of the semantics of digital content and naturally expressed user intentions
to help retrieve, manage, manipulate, or even create the content. Semantic comput-
ing aims to bridge the semantic gap by employing appropriate semantic analysis
techniques such as natural language processing, processing of multimodal content,
speech recognition, Web, data and process mining, semantic link discovery as well
as semantic enrichment and repair. Semantic Web knowledge representation tech-
niques (e.g. OWL8, RDF, RDFa, SPARQL, SKOS) help to bridge the semantic
gap through a common ground of shared vocabularies and ontologies [Sheu et al.,
2010, Hasida, 2007].

Semantic Document is an intelligent document (with explicit semantic structure)
which “knows about” its own content so that it can be automatically processed in
unforeseen ways. These benefits, however, come at the cost of increased authoring
effort [Hasida, 2007, Uren et al., 2006].

Semantic Content Authoring (SCA) is a tool-supported manual composition
process aiming at the creation of semantic documents which are:

• fully semantic in the sense that their original data model uses a semantic
knowledge representation formalism (such as RDF, RDF-Schema9 or OWL)
or

• based on a non-semantic representation form (e.g. text or hypertext), which
is enriched with semantic representations during the authoring process.

. With an ontology and a user interface appropriate for the type of content,
semantic authoring can be easier than traditional composition of content and the
resulting content can be of higher quality [Hasida, 2007].

Semantic Content Authoring User Interface (SCAUI) is a human accessible
interface with capabilities for modifying and writing semantic documents.

Human Computer Interaction (HCI) is a research field that aims to improve
the interactions between users and computers by making computers more usable
and receptive to the user’s needs.

8http://www.w3.org/OWL/
9http://www.w3.org/TR/rdf-schema/

35

http://www.w3.org/OWL/
http://www.w3.org/TR/rdf-schema/

3. Concepts and State of the Art

deliverable

Nature

deliveryDate

leading

partner

work

package

label

seeAlso

Deliverable L
O

D
2

O
n

to
lo

g
y

Article

Person

...

...

...

D
o

m
a

in

O
n

to
lo

g
y

Location

Organization

Person

label

label

label

...

...

...

...

Top-Down

Bottom-Up

OntologiesContent

Figure 3.5.: Top-Down and Bottom-Up approaches for semantic content authoring.

Social Semantic Web is a very general research field triggered by the advent
of Web 2.0. It aims at bringing a social novelty, rather than a technical one by
providing user-friendly tools to facilitate broad user participation in the process of
creating semantic content [Siorpaes and Simperl, 2010]. The Social Semantic Web
vision comprises many of the aforementioned domains and techniques.

3.3. Semantic Authoring Approaches

There are already different approaches proposed for semi-structured but non-
semantic content authoring (e.g. [Benson et al., 2010]). These approaches aim at
immediate user gratification in the form of useful visualizations and interesting data
aggregation but do not focus on using shared vocabularies and formal ontologies,
which ultimately facilitate portability and reuse. With regard to explicit semantic
content authoring recent approaches can be roughly classified into the categories
Top-Down and Bottom-Up. As demonstrated in Figure 3.5, the classification is
based on the starting point of the authoring process which can be ontologies
(with upper level of expressiveness) or unstructured content (with lower level of

36

3.3. Semantic Authoring Approaches

expressiveness). A third category of approaches (called Middle-Out or Hybrid)
that balance between the Top-Down and the Bottom-Up approach can also be
considered, but is beyond the scope of this research.

3.3.1. Bottom-Up Approaches

These approaches which are usually called semantic annotation techniques (a.k.a.
semantic markup [Araujo et al., 2010]) aim to annotate existing documents using a
set of predefined ontologies. The basic ingredients of a semantic annotation system
are ontologies, the documents and the annotations that link ontologies to docu-
ments [Uren et al., 2006]. Here, we need two kinds of ontologies [Valkeapaeae et al.,
2007]: Annotation ontologies (i.e. metadata schemata) which define what kind of
properties and value types should be used for describing a resource. For example,
the Dublin Core schema uses elements such as dc:title, dc:creator, dc:subject,
etc. Domain ontologies which are used to define vocabularies providing possible
values for metadata properties. Examples are eClassOWL10 defining products
and services, MeSH 11 defining medical subjects or the DBpedia12 knowledge base,
which is a cross-domain ontology extracted from Wikipedia.

The result of the annotation process is a document that is marked-up semantically.
For that concern, some markup strategies also known as Semantic Annotation
Techniques or Lower Semantic Techniques are proposed. Semantic markups provide
additional information (metadata) about an existing piece of data. It helps to
bridge the ambiguity of the natural language by telling computers what data in
text means and how data items are related. There are already different mechanisms
to annotate Web documents:

Microformats13 is an approach to integrate semantic markup into XHTML
and HTML documents. Microformats re-purpose existing markup definitions
(particularly the HTML class attribute) in a non-standard way to convey (meta-)
data. This approach is limited to a set of few published Microformat templates
and thus not easily extensible for domain-specific applications. Moreover, it is not
possible to validate Microformat annotations since no proper grammar is used for
their definition.

embedded RDF (eRDF)14 is similar to Microformats but annotates HTML
using RDF. However, it faces the same criticism as Microformats, since it uses the
same non-standard compatible annotating strategy[Araujo et al., 2010]. eRDF was
invented in 2005, and partly inspired by Microformats. The eRDF specification is
now obsolete, superseded by RDFa and Microdata.

10http://www.heppnetz.de/projects/eclassowl/
11http://www.ncbi.nlm.nih.gov/mesh
12http://dbpedia.org/
13http://microformats.org
14https://github.com/iand/erdf

37

http://www.heppnetz.de/projects/eclassowl/
http://www.ncbi.nlm.nih.gov/mesh
http://dbpedia.org/
http://microformats.org
https://github.com/iand/erdf

3. Concepts and State of the Art

Resource Description Framework in Attributes (RDFa) as explained in Sec-
tion 2.2.4 is a W3C Recommendation for semantic markup. RDFa fulfills the
principles of interoperable metadata such as publisher independence, data reuse,
self containment, schema modularity and evolvability to a good extent.

Microdata as explained in Section 2.2.4 is an HTML5 specification used to nest
semantics within existing content on Web pages. Microdata is already in use by
popular search engines for interpreting the information contained in a Web page
by exploiting Schema. org .
There are normally two types of metadata applied to a document in the process of
semantic annotation:

• Content metadata describe specific things the author of the document wishes
to write about (e.g. people, cities, etc.). These content-related metadata
cover a broad domain of information [Möller et al., 2006]. NLP annotation
APIs (e.g. DBpedia Spotlight15) are one approach to automatically add
content metadata into a document.

• Context metadata refers to the general topic, structure or temporal aspects of
a document (e.g. title, theme or creation date of a document). These context-
related metadata cover a very specific domain of information. Semantic
Tagging (e.g. Faviki16) and structured templates [Quint and Vatton, 2007]
are two approaches to automatically embed context-related metadata in a
document.

3.3.2. Top-Down Approaches

These approaches which are also called Ontology Population [Siorpaes and
Simperl, 2010] techniques aim to create semantic content based on a set of initial
ontologies which are extended during the population process. When compared to
the bottom-up approaches, these approaches deal with semantic representations
from the beginning instead of lifting unstructured content to a semantic level.
These approaches combine ontological rigour with flexible user interface constructs
to create semantic content. Semantic templates as discussed in [Auer et al.,
2006, Di Iorio et al., 2010, Thórisson et al., 2010] are one technique to realize this
goal. In this approach each class of the ontology has an associated template. A
page using that template represents each instance of a class. Data properties are
displayed as simple text while object properties are displayed as links to other pages
(representing other instances of the ontology). Users can also edit the underlying
ontology which will result in changes of the corresponding templates.

15http://spotlight.dbpedia.org
16http://www.faviki.com

38

Schema.org
http://spotlight.dbpedia.org
http://www.faviki.com

3.4. Quality Attributes

3.4. Quality Attributes

In order to evaluate the strengths and weaknesses of different SCA systems, we
assess the systems according to predefined criteria which we call Quality Attributes.
Quality attributes are non-functional requirements used to evaluate the performance
of a system. They are widely used in architecture development and assessment
as high-level characteristics which systems enclose. In the context of this work,
quality attributes represent the areas of concern regarding the development of an
SCA system from the viewpoint of its consumers.

Based on the qualitative analysis of our primary studies, we obtained 11 quality
attributes. For each quality attribute we extracted one or more UI feature(s).
Features describe a specific type or property of UI that can be used to realize an
intended quality attribute. The features are directly (e.g. faceted browsing) or
indirectly (e.g. UIs for mobile devices) addressing the required UI functionality for
an SCA system. Table 3.1 surveys the quality attributes and various UI approaches
for their implementation. In the sequel we describe each of the 11 quality attributes
in more detail.

Usability

Usability is a measure of the quality of a user’s experience in interacting with
a system. In ISO 9241 usability is defined as the effectiveness, efficiency and
satisfaction with which specified users achieve specified goals in particular environ-
ments. Lauesen [Lauesen, 2005] and Nielsen [Nielsen, 2012] add more factors such
as learnability and utility to usability definition. In the context of this work, we
consider the following factors for defining the usability:

(A) Efficiency. How efficient is the system for the frequent user to expend
appropriate amounts of resources in relation to the effectiveness achieved
in a specified context of use?

(B) Effectiveness. How effective is the system to achieve specified tasks with
accuracy and completeness?

(C) Satisfaction. How satisfied is the user with the system?

(D) Learnability. How easy is the system to learn for various groups of users?

(E) Utility (or Usefulness). Assesses whether the system enables users to solve
real problems in an acceptable way.

39

3.
C

on
cep

ts
an

d
S
tate

of
th

e
A

rt

Quality
Attribute

Realization

Usability
Single Point of Entry Interface [Karger and Quan, 2005, Auer et al., 2006, Uren et al., 2006], Faceted

Browsing [Auer et al., 2006, Frosterus et al., 2011], Faceted Viewing [Luczak-Roesch, 2009, Heese et al.,
2010, O’Donoghue et al., 2010], Inline Editing and View Editing [Auer et al., 2006, Tramp et al., 2010]

Customizability
Living UIs [Haase et al., 2010], Providing Different Semantic Views [Auer et al., 2006, Di Iorio et al., 2010, Muller

et al., 2011, Berners-Lee et al., 2007]

Generalizability

Supporting Multiple Ontologies [Uren et al., 2006, Buffa et al., 2008, Heese et al., 2010, Navarro-Galindo and
Samos, 2010, Adrian et al., 2010, Ruiz-Rube et al., 2010], Supporting Ontology Modification [Uren et al.,

2006, Valkeapaeae et al., 2007, Di Iorio et al., 2010], Supporting Heterogeneous Document/Content Formats [Uren
et al., 2006, Heese et al., 2010]

Collaboration

Access Control [Uren et al., 2006, Ruiz-Rube et al., 2010, Tramp et al., 2010], Support of Standard Formats [Uren
et al., 2006, Valkeapaeae et al., 2007, Buffa et al., 2008, Heese et al., 2010, Luczak-Roesch, 2009, Ruiz-Rube et al.,
2010, Tramp et al., 2010, Klebeck et al., 2011], UIs for Social Collaboration [Auer et al., 2006, Berners-Lee et al.,

2007]

Portability
Cross-browser Compatibility [Valkeapaeae et al., 2007, Navarro-Galindo and Samos, 2010], UIs for Mobile

Devices [Ermilov et al., 2011]

Accessibility Accessible UIs [Hachey, 2011]

Proactivity
Resource Suggestion [Luczak-Roesch, 2009, Buffa et al., 2008], Real-time Semantic Tagging [Heese et al.,
2010, O’Donoghue et al., 2010], Concept Reuse [Heese et al., 2010, O’Donoghue et al., 2010, Auer et al.,

2006, Buffa et al., 2008], Real-time Validation [Valkeapaeae et al., 2007, Di Iorio et al., 2010]

Automation
Automatic Annotation [Siorpaes and Simperl, 2010, Araujo et al., 2010, Klebeck et al., 2011, Kiyavitskaya et al.,

2009, Valkeapaeae et al., 2007, Buffa et al., 2008, Luczak-Roesch, 2009]

Evolvability
Resource Consistency [Heese et al., 2010], Document and Annotation Consistency [Uren et al., 2006], Versioning

and Change Tracking [Auer et al., 2006]

Interoperability
Support of Standard Formats [Uren et al., 2006, Valkeapaeae et al., 2007, Buffa et al., 2008, Heese et al.,
2010, Luczak-Roesch, 2009, Ruiz-Rube et al., 2010, Tramp et al., 2010, Klebeck et al., 2011], Semantic

Syndication [Auer et al., 2006]

Scalability
Support of Caching [Auer et al., 2006, Herzig and Ell, 2010], Suitable Storage Strategies [Auer et al., 2006, Uren

et al., 2006, Navarro-Galindo and Samos, 2010, Luczak-Roesch, 2009]

Table 3.1.: List of quality attributes together with their corresponding UI features suggested for SCA systems.

40

3.4. Quality Attributes

Simplicity is the main prerequisite of usability. An SCA system should, as a
rule, hide technical concepts related to markup languages and ontologies from the
non-expert end-users [Valkeapaeae et al., 2007, Tramp et al., 2010]. It is crucial to
provide end-users with easy to use interfaces that simplify the annotation process
and place it in the context of their everyday work. More attention needs to be paid
to decrease or blur the gap between the normal authoring process and the semantic
authoring process. SCA systems should focus on the user’s main task [Heese et al.,
2010]. Usually, a user wants to perform the task of writing some text and not to
annotate content. Integrating semantic authoring process into the commonly used
packages is one approach to encourage users to view semantic authoring as part of
the authoring process not as an afterthought process [Uren et al., 2006].

The following features of UIs are proposed for improving the usability of SCA
systems:

• Single Point of Entry Interface.
It means the environment in which users annotate documents should be
integrated with the one in which they create, read, share and edit them. So,
there is no added user effort involved in creating a semantic content versus a
conventional approach, because the real work is done by the software through
capturing semantics that is already being provided by the user [Karger
and Quan, 2005, Auer et al., 2006, Uren et al., 2006]. This will minimize
user actions as well as memory load thereby increasing the efficiency, user
satisfaction, learnability and utility of the system.

• Faceted Browsing.
Faceted browsing is a technique for accessing a collection of information
represented using a faceted classification, allowing users to explore by filtering
the available information. In the UI which implements this technique, all
property values (i.e. facets) of a set of selected instances are analyzed.
If for a certain property the instances have only a limited set of values,
those values are offered to further restrict the instance selection. Hence,
this way of navigation through data will never lead to empty results [Auer
et al., 2006, Frosterus et al., 2011]. This feature is useful when searching for
available resources or vocabularies. Faceted browsing increases the efficiency
and effectiveness of the system by improving the navigability.

• Faceted Viewing.
Faceted viewing [Luczak-Roesch, 2009, Heese et al., 2010] also known as
augmented browsing [O’Donoghue et al., 2010] is very similar to faceted
browsing but is used to distinguish the semantically annotated content from
the normal content based on the different facets selected by user. For example,
highlighting the names of members of a specific working group with a yellow
background in the text. Similar to the faceted browsing, faceted viewing
will increase the efficiency and effectiveness of the system by improving the
navigability.

41

3. Concepts and State of the Art

Minimal Action
-  Single point of entry UI
-  Inline editing & view editing

+ +

Minimal Memory Load
-  Single point of entry UI
-  Integration into the commonly

used packages

+ + + +

Navigability
-  Faceted browsing
-  Faceted viewing

+ +

Simplicity & Familiarity
-  Simple UIs focusing on user’s

main task
-  Integration into the commonly

used packages

+

Criteria
-  UI feature E

ff
ic

ie
nc

y

E
ff

ec
tiv

en
es

s

S
at

is
fa

ct
io

n

Le
ar

na
bi

lit
y

U
til

ity

Usability Factors

Table 3.2.: Relation between usability factors and criteria (’+’ indicates the positive
effect of a criteria on usability factors).

• Inline Editing and View Editing.
An SCA system should provide different editing modes for editing single and
batch items. Inline editing allows editing items by clicking on them. View
editing supports the editing of a combination of items in a specific view in
one single step [Auer et al., 2006, Tramp et al., 2010]. This feature helps
users to edit items in a minimum number of steps (minimal action) thereby
increasing the efficiency and user satisfaction.

Table 3.2 shows how the aforementioned UI type and properties affect our
previously defined usability factors. It is based on the QUIM model defined by
Seffah et al. [Seffah et al., 2006]. Quality in Use Integrated Measurement (QUIM)
model brings together usability factors, criteria, metrics, and data mentioned
in various standards or models for software quality and defines them and their
relations with one another in a consistent way.

Customizability

Customizability is the ability of a system to be configured according to users’
needs and preferences. Instead of being a static form strictly dependent on a given
schema, an SCA system should provide mechanism to tailor its functionalities
based on the user needs [Di Iorio et al., 2010]. In [O’Donoghue et al., 2010] the
concept of “semantics in the eyes of the end-user” is introduced which means an

42

3.4. Quality Attributes

SCA system should provide different views for different personas using the system.
The following features of UIs are proposed for improving the customizability of

SCA systems:

• Living UIs.
A Living UI is a user interface that configures itself to automatically dis-
play the information most relevant to the user, dynamically adjusts to
changing data, and still allows single users to customize according to their
preferences [Haase et al., 2010]. End-user development techniques like Pro-
gramming by Example (PbE) allow inferring user intents in real interactions
and according to that providing customized outputs [Perdrix et al., 2009].

• Providing Different Semantic Views.
Semantic views allow the generation of different views on the same metadata
schema and aggregations of the knowledge base based on the roles, personal
preferences, and local policies of the intended users [Auer et al., 2006, Di Iorio
et al., 2010, Muller et al., 2011]. Such views can be either generic or
domain specific. Generic views provide visual representations of instance
data according to certain property values (e.g. map view or calendar view).
Domain specific views address the requirements of a particular domain user
(e.g. chemists need specific views for visualizing the atomic structure of
chemical compounds).

Generalizability

Generalizability is the ability of a system to adapt to different situations or
use cases. An SCA system should support a wide range of metadata schemata
in a flexible way. In fact, the more flexible and adaptable a system is, the more
valuable it is for different contexts and users. A generic SCA system reduces
the costs of supporting new schemata considerably, by following the evolution
of existing standards and integrating heterogeneous resources [Di Iorio et al.,
2010]. Adaptivity is an important capability of a generic system. An SCA system
should be adaptable to different annotation and authoring uses with different kinds
of contents to be processed [Valkeapaeae et al., 2007, Adrian et al., 2010]. In
most of the cases generalizability is in opposition to Usability of a system. For
instance, adding more and more syntactic possibilities counteracts ease of use for
SCA systems [Auer et al., 2006]. The following features of UIs are proposed for
improving the generalizability of SCA systems:

• Supporting Multiple Ontologies.
A domain is usually described by several ontologies. For example, in a medical
context there may be one ontology for general metadata about a patient
and other technical ontologies that deal with diagnosis and treatment. SCA
systems need to be able to support multiple ontologies [Uren et al., 2006, Buffa
et al., 2008, Heese et al., 2010, Navarro-Galindo and Samos, 2010, Adrian

43

3. Concepts and State of the Art

et al., 2010, Ruiz-Rube et al., 2010, Frosterus et al., 2011, Luczak-Roesch,
2009, Auer et al., 2006]. In a generic SCA system, the user interface must
be completely decoupled from the ontological models. Models should be
able to be added at runtime and become immediately accessible to the
users [Ruiz-Rube et al., 2010, Buffa et al., 2008].

• Supporting Ontology Modification.
A generic SCA system should provide users with user-friendly interfaces
to modify the structure (classes and properties) of ontologies [Uren et al.,
2006, Valkeapaeae et al., 2007, Di Iorio et al., 2010, Auer et al., 2006]. In
this case, the system also needs to deal with consistency issues which might
arise between ontologies and annotations with respect to ontology changes
(a.k.a. Ontology Maintenance [Uren et al., 2006]).

• Supporting Heterogeneous Document and Content Formats.
Supporting heterogeneous document and content formats is a prerequisite
for integrating semantic authoring and annotation into the existing work
practices [Uren et al., 2006, Heese et al., 2010]. A generic SCA system should
be able to import documents in different formats such as word processor
files, spreadsheets, graphics files and complex mixtures of them. It also
needs to provide appropriate semantic annotations for different content types.
For example, during the content annotation, a data table should be treated
differently then raw text, because a table implicitly expresses relationships
between the entries of a row (or column).

Collaboration

Collaboration refers to the ability of a system to support cooperation between
different users of the system. An SCA system should support collaborative semantic
authoring, where the authoring process can be shared among different authors at
different locations. This is a key requirement of knowledge sharing between users
from different fields who are contributing to and reusing intelligent documents [Uren
et al., 2006, Valkeapaeae et al., 2007, d’Aquin et al., 2008]. Web 2.0 applications
and related technologies provide incentives to their users for collaboration and lead
to rapidly growing amounts of content. Triggered by the success of the Web 2.0
phenomenon the Social Semantic Web idea has gained momentum yielding tools
that allow collaboration and participation incorporating semantics by lay users.
As a result, many collaborative and community-driven approaches to semantic
content creation have been proposed. Examples are Semantic Wikis and Semantic
Tagging Systems (e.g. Faviki17) which exploit Web 2.0 principles and technologies
to facilitate broad user participation and collaboration in the process of creating
semantically enriched or annotated content [Siorpaes and Simperl, 2010, Herzig
and Ell, 2010]. [Di Iorio et al., 2010] divides semantic wikis into two main

17http://www.faviki.com/

44

http://www.faviki.com/

3.4. Quality Attributes

categories according to their connections with the ontologies: wikis for ontologies
and ontologies for wikis. The classification is very similar to our proposed top-down
(cf. Section 3.3.2) and bottom-up approaches (cf. Section 3.3.1). Access control
and supporting standard formats are two additional independent prerequisites of
collaboration in an SCA system [Uren et al., 2006, Ruiz-Rube et al., 2010, Tramp
et al., 2010]. The SCA system should allow to distinguish between writeable and
non-writeable content based on the users permission level. It also needs to support
standard formats that promote the collaboration and make it possible to share
and re-use the generated content. To realize collaboration, an SCA system should
provide appropriate UI elements for meta-level interactions around different types
of semantically created content such as rating, tagging and discussing. Supporting
social networking features such as following other authors, subscribing to changes
for watching the evolution of content [Berners-Lee et al., 2007] as well as reusing
and repurposing of content are also important to increase the collaboration in an
SCA system.

Portability

Portability is the ability of a system to run under different environments. The
user of an SCA system should be able to use the system at any location without
installing any special software [Valkeapaeae et al., 2007, Navarro-Galindo and
Samos, 2010]. When focusing on Web-based UIs, compatibility between different
existing web browsers and access technologies becomes an important issue. As a
requirement for UI, cross-browser compatibility should ideally be ensured in an
SCA system. Designing suitable UIs for mobile and ubiquitous devices is another
aspect which needs to be taken into the account as powerful mobile computing
devices are becoming common among the users [Ermilov et al., 2011].

Accessibility

Accessibility describes the degree to which a software system is available to as
many people as possible. It can be viewed as the ability to access and benefit from
some system. Accessibility is often used to focus on people with disabilities or
special needs and their right of access to system. As mentioned in [Hachey, 2011],
papers discussing accessibility are clearly lacking in the context of Semantic Web
UIs.

Proactivity

Proactivity is the ability of a system to act in advance of a future situation,
rather than just reacting. It means taking control and making things happen rather
than just adjusting to a situation or waiting for something to happen. An SCA
system should provide users with pre-filled form fields, suggestions, default values
etc. These facilities simplify the authoring process, as they reduce the number of

45

3. Concepts and State of the Art

actions users have to perform. Moreover, they reduce the possibility that users
provide incomplete or empty metadata [Di Iorio et al., 2010].

The following features of UIs are proposed for improving the proactivity of SCA
systems:

• Real-time Semantic Tagging.
Real-time tagging means creating annotations while the user is typing [Heese
et al., 2010]. This will significantly increase the annotation speed [O’Donoghue
et al., 2010]. Users are not distracted since they do not have to interrupt
their current authoring task. This type of UI needs a client-side component
which interacts with the server asynchronously.

• Resource Suggestion.
An SCA system should provide users with a set of entity (i.e. URI) suggestions
to facilitate the annotation process for non-expert users [Luczak-Roesch,
2009, Buffa et al., 2008].

• Concept Reuse.
An SCA system becomes increasingly advantageous, if once defined concepts
(e.g. classes, properties, or instances) are as much reused and interlinked as
possible [Auer et al., 2006]. Suggesting already defined concepts to users
(particularly new and inexperienced users) will facilitate their contribution
to the system.

• Real-time Validation.
When the annotation is completed by user, the SCA system should apply
validation mechanisms to check the correctness of the values. Validating
metadata while they are being created improves the overall quality of the
documents and does not require further consistency checks, which might be
difficult or even impossible once the provider of metadata has completed the
job [Valkeapaeae et al., 2007, Di Iorio et al., 2010].

Automation

Automation is the ability of a system to automatically perform its intended
tasks thereby reducing the need for human work. In the context of semantic
authoring it means the provision of facilities for automatic mark-up of documents
to facilitate the economical annotation of large document collections [Uren et al.,
2006]. The automatic process of annotating is composed basically of finding terms
in documents, mapping them against an ontology, and disambiguating common
terms. There are wide ranges of approaches that carry out automatic annotation
of texts. Most of them employ natural language processing and information extrac-
tion techniques. These approaches differ in architecture, information extraction
tools and methods, initial ontology, amount of manual work required to perform
annotation, as well as performance [Siorpaes and Simperl, 2010, Araujo et al.,

46

3.4. Quality Attributes

2010]. Existing automated SCA systems can be divided into two categories: semi-
automatic and fully-automatic systems. In semi-automatic systems [Valkeapaeae
et al., 2007, Luczak-Roesch, 2009], the user is provided with a set of suggestions
to select from. So, disambiguation is performed with the help of user (i.e. incor-
porating user feedback to enhance the automation results). In fully-automatic
systems [Klebeck et al., 2011, Kiyavitskaya et al., 2009], annotations are generated
without any intervention by users. Fully-automatic systems can generally be
regarded as falling into three categories [Uren et al., 2006]. The most basic kind
use rules or wrappers written by hand those try to capture known patterns for
the annotations. Then there are two kinds of systems that learn how to annotate.
Supervised systems learn from sample annotations marked up by the user. A
problem with these methods is that picking enough good examples is a non-trivial
and error-prone task. In order to tackle this problem unsupervised systems employ
a variety of strategies to learn how to annotate without user supervision, but their
accuracy is still limited.

Automated SCA systems should take into account user interface design issues
related to minimizing intrusiveness while maximizing accuracy. Completely auto-
mated systems, which do not involve any user interaction in the process of semantic
content creation, are out of scope of this work. User interaction is required to
supervise, assess or evaluate the automated annotation thereby creating accurate
semantic content.

Evolvability

Evolvability is defined as the capacity of a system for adaptive evolution. An
SCA system should support evolution of the annotated document [Uren et al.,
2006, Heese et al., 2010, Navarro-Galindo and Samos, 2010, Ruiz-Rube et al.,
2010, Di Iorio et al., 2010]. To achieve this goal, it should take into account the
following consistency constraints:

• Resource Consistency.
If users annotate the same resource in different texts, it is important to
reference the same resource in the generated RDF statements. Otherwise,
we obtain many resources that are not interlinked and the statements in the
repository are not very useful and meaningful [Heese et al., 2010].

• Document and Annotation Consistency.
Supporting Ontology Modification as discussed in Section 3.4 is an important
feature for the generalizability of an SCA system. In this case, the system
also needs to deal with consistency issues that might arise between ontologies
and annotations. One of the important issues for the design of a semantic
authoring environment is to determine how changes should be reflected in the
knowledge base of annotated documents and whether changes to ontologies
create conflicts with existing annotations [Uren et al., 2006]. Ontologies

47

3. Concepts and State of the Art

change sometimes but some documents change many times. So, it is crucial
for an SCA system to track the annotation evolution.

An SCA system should provide appropriate UIs for versioning and change
tracking to deal with document and annotation evolution.

Interoperability

Interoperability is the ability of a system to work and interact with other systems.
An SCA system should provide mechanisms to interoperate together with other
systems which generate or consume the semantic content created. The following
features of UIs are proposed for improving the interoperability of SCA systems:

• Support of Standard Formats.
To minimize the problems of interoperability the SCA system should be
built on standards. There are already many standards for semantic con-
tent serialization (e.g. typical RDF serializations and particular RDFa),
representation (e.g. RDF/RDF-S/OWL/RIF and established vocabularies
such as Semantically-Interlinked Online Communities (SIOC), SKOS, Friend
Of A Friend (FOAF), rNews, etc.) and exchange (e.g. Linked Data, Web
Services, REST). Supporting standard formats and avoiding proprietary
formats are essential for compatibility of data with other systems [Uren et al.,
2006, Valkeapaeae et al., 2007, Buffa et al., 2008, Heese et al., 2010, Luczak-
Roesch, 2009, Ruiz-Rube et al., 2010, Tramp et al., 2010, Klebeck et al.,
2011].

• Semantic Syndication.
Semantic syndication supports the distribution of information and their
integration into other applications by providing mechanisms such as Semantic
Atom [Patel and Khuba, 2009] and Semantic Pingback 18 [Auer et al., 2006].

Scalability

Scalability refers to the capability of a system to maintain performance under
an increased work load. An SCA system should support scalability as for example,
the number of users, data or annotations increase. Support of caching and
implementing a suitable storage strategy play an important role in achieving an
scalable SCA system [Auer et al., 2006, Uren et al., 2006, Navarro-Galindo and
Samos, 2010, Herzig and Ell, 2010, Luczak-Roesch, 2009]. Annotations can be
directly stored in the document or stored separately in a triple store. Most of the
current SCA systems adopt a dual storage strategy of semantic annotations. In
this case, annotations are stored in a server-side triple store and also embedded in
the same document where annotations are undertaken in a way that is completely
transparent to the user. A dual storage approach poses a redundancy but allows

18http://aksw.org/Projects/SemanticPingBack

48

http://aksw.org/Projects/SemanticPingBack

3.5. Quality Attributes Dependencies

Usability Customizability Generalizability Evolvability

Proactivity

Automation

CollaborationInteroperability

Scalability Portability

Accessibility

+

+- ++

+

+

+

+-

Figure 3.6.: Quality attributes dependencies (‘+’: positive effect, ‘+-’: reciprocal
effect).

information from heterogeneous resources to be queried centrally and in real-time
as a knowledge base [Auer et al., 2006, Uren et al., 2006].

3.5. Quality Attributes Dependencies

The aforementioned quality attributes are not completely isolated and indepen-
dent from each other but have overlaps and relations with each other. Figure 3.6
shows an overview of these quality attributes with their interrelations. Proactivity,
automation and customizability will improve the usability of an SCA system.
Proactive and automatic systems provide users with helpers, which facilitate the
usage of the system. Customized systems are configured based on the user needs
thereby increase the overall usability of the system.

Scalability will enhance the level of system collaboration. A scalable system
will support more users and annotations thereby more collaboration in the system.
Interoperability will also enhance the collaboration support of a system, since
an interoperable system supports users of different systems. It can also support
importing user data from other systems that will play a positive role in enhancing
the customizability.

Evolvability and generalizability are directly related. The more evolvable to
change a system is, the more generic it will be and vice versa. Customizability
and generalizability share a reciprocal relation. A generic system will decrease its
customization and a customizable system needs to focus on specific user needs and
thus lacks generalizability. Scalability also has a reciprocal relation to proactivity
and automation. Having scalability with larger data, computing proactivity and
automation actions may become too heavy and complex to handle.

49

3. Concepts and State of the Art

3.6. User Types

Table 3.3 shows the list of tools discussed in our primary studies. The follow-
ing tools were described in the primary studies: OntoWiki [Auer et al., 2006],
SAHA [Frosterus et al., 2011], OWiki [Di Iorio et al., 2010], SemCards [Thórisson
et al., 2010], DataPress [Benson et al., 2010], Loomp [Luczak-Roesch, 2009],
Semantic MediaWiki [Herzig and Ell, 2010], SweetWiki [Buffa et al., 2008], In-
formation Workbench [Muller et al., 2011], RDFAuthor [Tramp et al., 2010],
FLERSA [Navarro-Galindo and Samos, 2010], LinkedBlog [Ruiz-Rube et al., 2010],
SemiBlog [Möller et al., 2006], HayStack semantic blogging [Karger and Quan,
2005], Reflect [O’Donoghue et al., 2010], Ontos-feeder [Klebeck et al., 2011],
Epiphany [Adrian et al., 2010], Linkator [Araujo et al., 2010], Tabulator [Berners-
Lee et al., 2007].

For each tool, we extracted the type of user, domain of the tool and the
authoring approach employed in the tool. There are two general types of users
mainly discussed in the studies:

• End user or normal users which have no or limited knowledge of the domain
on which the annotations or semantic structures are applied. They constitute
the majority of the population using the Internet to browse for information
and communicate with others.

• Domain experts which have a broad knowledge of the domain on which the
annotations or semantic structures are applied. They are usually consisted
of the researchers or engineers with a top-down view of problems.

As our results revealed, the majority of studies (i.e. all the tools which employed
the bottom-approach) were addressing tools that are appropriate for end users.
Tools that were adopting the top-down approach needed users to have knowledge of
the corresponding domain as well as ontology concepts. It is worth mentioning that
by domain-independent, we mean that the tool is not limited to any predefined
domains and is flexible enough to be applied in arbitrary domains. For instance,
OntoWiki is domain-independent while it requires a domain-expert as user. This is
due to the fact, that when a user wants to create semantic content using OntoWiki,
he should have a broad view on the selected domain to define the required ontologies
(i.e. the available classes, their possible relationships, constraints, class properties,
data types, etc.) and to populate the data accordingly. Otherwise he cannot create
semantic content with the tool.

50

3.6.
U

ser
T

y
p

es

Tool Ref. User Type Domain
Authoring
Approach

OntoWiki [Auer et al., 2006] Domain expert
Domain-

independent

Top-Down
OWiki [Di Iorio et al., 2010] Domain expert

Domain-
independent

SAHA [Frosterus et al., 2011] Domain expert
Governmental

data

SemCards [Thórisson et al., 2010] End-user (non-expert)
Domain-

independent

RDFAuthor [Tramp et al., 2010]
End-user &

Domain-expert
Domain-

independent

Tabulator [Berners-Lee et al., 2007]
End-user &

Domain-expert
Domain-

independent

Reflect [O’Donoghue et al., 2010] End-user (researchers) Chemistry

Bottom-Up

Epiphany [Adrian et al., 2010] End-user CMS
Ontos-feeder [Klebeck et al., 2011] End-user (journalist) Journalism
DataPress [Benson et al., 2010] End-user (blogger) Blogs & Wikis

Loomp [Luczak-Roesch, 2009] End-user (journalist) Journalism

Semantic MediaWiki [Herzig and Ell, 2010] End-user (Wiki users)
Domain-

independent
LinkedBlog [Ruiz-Rube et al., 2010] End-user (blogger) Blogs

SweetWiki [Buffa et al., 2008] End-user (Wiki users)
Domain-

independent
Linkator [Araujo et al., 2010] End-user CMS
FLERSA [Navarro-Galindo and Samos, 2010] End-user CMS

Information Workbench [Muller et al., 2011] End-user (researchers)
Paper review &

publishing
HayStack semantic

blogging
[Karger and Quan, 2005] End-user (blogger) Blogs

SemiBlog [Möller et al., 2006] End-user (blogger) Blogs

Table 3.3.: User types, domain and authoring approach of the surveyed SCA systems.

51

3. Concepts and State of the Art

3.7. User Interface Evaluation

In this section we briefly outline various methods for user interface evaluation
and report about their usage in the surveyed papers. Table 3.4 lists existing
methods for user interface evaluation adopted from [Fitzpatrick, 1998, Chen and
Babar, 2011].

Among the primary studies, the majority of studies ([Auer et al., 2006, Di Iorio
et al., 2010, Luczak-Roesch, 2009, Ruiz-Rube et al., 2010, Thórisson et al., 2010,
Tramp et al., 2010, Muller et al., 2011, Araujo et al., 2010, Navarro-Galindo and
Samos, 2010, Möller et al., 2006, Klebeck et al., 2011, Berners-Lee et al., 2007,
Herzig and Ell, 2010]) were only using an Example Application as their evaluation
method. A few studies ([Frosterus et al., 2011, Buffa et al., 2008, O’Donoghue
et al., 2010, Adrian et al., 2010, Karger and Quan, 2005]) were also using the
Discussion method together with an example application. One study ([Benson
et al., 2010]) used Interview and Questionnaire methods for UI evaluation. Other
papers were either survey papers or the papers, which only mentioned some user
interface features and did not provide any UI evaluation method. The results
distinctly exposes the lack of formal and systematic UI evaluation methods in the
context of SCA systems.

Analyzing the suitability of each evaluation method for measuring the quality
attributes introduced in Section 3.4 is beyond the scope of this work but to bring
some examples: Among the evaluation methods, Simulation is suitable to measure
the Scalability of an SCA system. Most of the evaluation methods (e.g. Empirical
Methods, Questionnaire, Interview, Observation and Modeling Methods) can be
used to measure the Usability of an SCA system. Observation method seems to
be suitable to measure the level of Collaboration in an SCA system and so on.

52

3.7.
U

ser
In

terface
E

valu
ation

Evaluation Method Definition

Empirical Methods (Case
Study)

An empirical inquiry that investigates a contemporary phenomenon within its real-life
context; A usability evaluation specialist tests a well-defined hypothesis by measuring
subject (user) behavior while he manipulates variables.

Discussion
Provided some qualitative, textual, opinion-oriented evaluation. E.g., compare and
contrast, oral discussion of advantages and disadvantages.

Example Application
Authors describe an application and provide an example to assist in the description,
but the example is “used to validate” or “evaluate” as far as the authors suggest.

Observation (Experience)

The result has been used on real examples, but not in the form of case studies or
controlled experiments, the evidence of its use is collected informally or formally.
A usability evaluation specialist acts as the observer of users as they interact with
computers, noting user successes, difficulties, likes, dislikes, preferences and attitudes.

Questionnaire
The use of a set of items (questions or statements) to capture statistical data relating
to user profiles, skills, experience, requirements, opinions, preferences and attitudes.

Interview
A formal consultation or meeting between a usability evaluation specialist and user(s)
to obtain information about work practices, requirements, opinions, preferences and
attitudes.

User Groups
Availing of the wealth of knowledge and experience of organized (user forum) and
selected (beta site) end users.

Cognitive Walkthroughs
A step-by-step evaluation of a design by a cognitive psychologist in order to identify
potential user psychological difficulties with the system.

Heuristic Methods
The use of a team of usability evaluation specialists to review a product or prototype
in order to confirm its compliance with recognized usability principles and practice.

Review Methods
The review and reuse of the wealth of experimental and empirical evidence in the
research literature and in the de-facto standards established by the software industry.

Simulation Execution of a system within artificial data, using a model of the real world.

Modeling Methods
Using models like GOMS (Goals, Operations, Methods and Selection) and KLM
(Keystroke Level Modeling) to predict and provide feedback on user interactions and
difficulties.

Table 3.4.: User interface evaluation methods.

53

3. Concepts and State of the Art

3.8. Example Tools

In this section we look at three available SCA systems and compare them
according to the quality attributes defined in Section 3.4. We will investigate their
strengths and weaknesses based on our proposed taxonomy of quality attributes
and UI features which are required for SCA systems. We have selected these three
example tools so that top-down and bottom-up tools, domain expert and end
user tools as well as domain-independent and domain-specific tools are covered.
Among the tools two (i.e. Ontowiki and SAHA 3) follow the top-down approach (cf.
Section 3.3.2) and one (i.e. Loomp) follow a bottom-up approach (cf. Section 3.3.1)
for semantic content authoring.

We used the criteria availability of an online demo, availability of technical
implementation details, having up-to-date support and number of quality attributes
addressed in the tool to select these 3 tools out of the 20 tools discovered in
the literature (cf. Table 3.3). Table 3.5 summarizes the assessment of the tools
according to the defined quality attributes.

3.8.1. OntoWiki

OntoWiki19 [Auer et al., 2006] is a tool that provides support for agile, distributed
knowledge engineering scenarios. Ontowiki facilitates the visual presentation of a
knowledge base as an information map, with different views on instance data.

Regarding the technical realization, the system is implemented in PHP using
the Zend framework 20. It supports the MySQL database and the Virtuoso triple
store as storage backends and the authoring interface is built using jQuery UI21.

Figure 3.7 shows a screenshot of OntoWiki. OntoWiki was applied in a number
of use cases. Examples include: semantic content management [Heino et al.,
2011], collaborative requirements engineering with SoftWiki [Lohmann et al.,
2008] and historical, prosopographical knowledge engineering with the Professor’s
Catalogue [Riechert et al., 2010].

Ontowiki as a single point of entry UI adopts the top-down approach for semantic
authoring. It provides a semantic search feature with support for faceted browsing.
It also supports two complementary knowledge base authoring strategies: a) Inline
editing, which enables users to edit small information chunks (i.e. statements). b)
View editing, which enables users to edit common combinations of information
(such as an instance of a distinct class) in one single step. In order to do so,
Ontowiki uses RDFAuthor [Tramp et al., 2010] to make generated RDFa views
editable. Regarding the customizability, OntoWiki supports different semantic
views of the knowledge base, which can be generic or domain-specific. It also
supports editing multiple ontologies including both the instances and structures of

19http://ontowiki.net
20http://framework.zend.com/
21http://jqueryui.com/

54

http://ontowiki.net
http://framework.zend.com/
http://jqueryui.com/

3.8. Example Tools

OntoWiki SAHA 3 Loomp

Usability
• Single point of entry UI

• Faceted browsing

• Inline editing/view editing

• Single point of entry UI

• Faceted browsing

• Inline editing

• Single point of entry UI

• Faceted viewing

Customizability
• Semantic views: domain specific &

generic (e.g. map, calendar)
- -

Generalizability
• Multiple ontology support

• Ontology modification support
• Multiple ontology support • Multiple ontology support

Collaboration

• Access control

• Standard formats: RDF, RDFa

• Social collaboration UIs: rating and

commenting UIs

• Access control

• Standard formats: RDF

• Social collaboration UIs: online chat

• Standard formats: RDF, RDFa

Portability
• Cross-browser compatibility

• UI for mobile devices
• Cross-browser compatibility • Cross-browser compatibility

Accessibility - - -

Proactivity
• Resource suggestion

• Concept reuse

• Resource suggestion

• Concept reuse

• Real-time validation

• Resource suggestion

• Concept reuse

Automation - - -

Evolvability
• Resource consistency

• Document & annotation consistency

• Versioning & change tracking

• Resource consistency

• Document and annotation

consistency

• Document and annotation consistency

Interoperability
• Standard formats: RDF, RDFa

• Semantic syndication: semantic pingback
• Standard formats: RDF • Standard formats: RDF, RDFa

Scalability
• Caching support

• Storage strategy: backend independent

(Mysql, Virtuoso)

• Storage strategy: using a server-side

triple store

• Storage strategy: using a server-side

triple store

Table 3.5.: Comparison of OntoWiki, SAHA 3, Loomp according to the quality
attributes.

the ontologies. As a Web-based system, it provides cross-browser compatibility
and has a specific UI for mobile devices. To provide proactivity, OntoWiki uses the
AJAX technology to interactively propose already defined concepts while the user
types in new information to be added to the knowledge base (i.e. Concept Reuse).

OntoWiki also provides versioning and evolution features to track, review and
selectively roll-back changes and supports semantic syndication (employing Se-
mantic Pingback and Linked Data interfaces) to interoperate with other systems.
OntoWiki is backend independent to some extend and supports two different
types of storage engines. It also provides a caching component to optimize the
performance of the system.

As a drawback, OntoWiki does not provide any UI elements to facilitate ac-
cessibility and automation. It supports only the editing of structured content
thus lacking UIs for the annotation of unstructured or semi-structured content.
Furthermore, it does not provide real-time tagging and validation for increasing
the overall proactivity.

55

3. Concepts and State of the Art

Figure 3.7.: Screenshot of the OntoWiki instance view with inline editing.

3.8.2. SAHA 3 Metadata Editor

SAHA 3 22 [Frosterus et al., 2011] is an RDF metadata editor for collaborative
content creation and instant semantic content publishing on the Semantic Web.
Regarding the technical realization, the system is implemented in Java on top
of the Spring framework 23. The data model is based on the Jena TDB24 RDF
database and the editor interface is built using DWR25 and the Dojo26 AJAX
components.

Figure 3.8 shows a screenshot of SAHA 3. DataFinland27 as a semantic portal
for open and linked datasets is one use case of SAHA 3.

Like OntoWiki, SAHA 3 uses the top-down approach for semantic authoring and
a single point of entry UI with inline editing features. It supports faceted browsing
when integrated into the faceted portal engine HAKO28 for content publishing.
SAHA 3 supports multiple ontologies as well as collaborative simultaneous editing.
Resources that are being edited by one user are locked for editing by other users.
A chat facility has been integrated into the editor to facilitate instant discussions
between peer editors.

Regarding proactivity, SAHA 3 also provides real-time semantic validation and
concept reuse. As shown in [Kurki and Hyvönen, 2010], SAHA 3 has proven a

22http://demo.seco.tkk.fi/saha/saha3/
23http://www.springsource.com/
24http://openjena.org/TDB/
25http://directwebremoting.org/
26http://www.dojotoolkit.org/
27http://www.seco.tkk.fi/linkeddata/datasuomi/
28http://www.seco.tkk.fi/tools/hako/

56

http://demo.seco.tkk.fi/saha/saha3/
http://www.springsource.com/
http://openjena.org/TDB/
http://directwebremoting.org/
http://www.dojotoolkit.org/
http://www.seco.tkk.fi/linkeddata/datasuomi/
http://www.seco.tkk.fi/tools/hako/

3.8. Example Tools

good level of scalability to support large projects.
As a drawback, SAHA 3 does not provide any UI elements to provide cus-

tomizability, accessibility and automation. Like OntoWiki, it only supports struc-
tured content authoring thus lacking the appropriate UIs for unstructured or
semi-structured content annotation. Although it provides some simple UIs for
supporting collaboration but lacks sophisticated features regarding social inter-
actions. Since it does not provide any UI elements for versioning and change
tracking, evolvability is not well addressed. Scalability could be further improved
by adding support for caching and alternative storage backends (i.e. client-side
RDF processing).

Figure 3.8.: Screenshot of the SAHA 3 inline editing.

3.8.3. Loomp

Loomp29 [Luczak-Roesch, 2009] is a tool representing a prove-of-concept for the
One Click Annotation (OCA) (heese2010) strategy. The Web-based OCA editor
allows for annotating words and phrases with references to ontology concepts and
for creating relationships between annotated phrases [Heese et al., 2010].

Regarding the technical realization, Loomp is a typical Web application built on
the LAMP stack30. It serves content either in RDF (e.g. for linked data clients) or
in XHTML/RDFa (e.g. for Web browsers).

29http://loomp.org
30LAMP: Linux operating system, Apache web server, MySQL database, PHP scripting

language.

57

http://loomp.org

3. Concepts and State of the Art

Figure 3.9 shows a screenshot of Loomp. Data-driven journalism is mentioned
as one of the primary uses cases of Loomp.

Loomp provides a WYSIWYG editor as a single point of entry UI which adopts
the bottom-up approach for semantic content authoring. It supports a faceted
viewing feature, which highlights user-selected annotations in the Web browser.
Loomp facilitates concept reuse and suggestion in order to reduce non-expert user
efforts during the annotation process. It also employs RDF and RDFa standard
formats which make it interoperable with other systems.

As a drawback, Loomp lacks appropriate UI elements to support customizability,
accessibility and automation. It does not provide any UI features for faceted
browsing and inline editing of annotations. It also does not allow to directly edit
the underlying ontologies thereby extending the annotation domain. Furthermore,
Loomp lacks appropriate UI elements for real-time tagging and validation as well
as versioning and change tracking. Regarding scalability, no information could be
found on how Loomp supports large amounts of users and annotations.

Figure 3.9.: Screenshot of the Loomp faceted viewing UI.

3.9. Research and Technology Challenges

The results of our systematic review revealed some research and technology gaps
and corresponding challenges with regard to the development of SCAUIs.

Accessibility. There is a clear research gap in addressing accessibility issues
during the design of SCAUIs. Many semantic authoring tools remain inaccessible
to people with disabilities. Providing people with disabilities and special needs with
appropriate SCAUIs can facilitate their tasks of information seeking. Semantically
annotated content allows alternatives or conditional content in different modalities
to be selected based on the type of the user disability and information need.
For example, visually impaired people need significantly more time to grasp the
structure and gist of a Web site, since visual navigation and structuring elements

58

3.9. Research and Technology Challenges

are not accessible to them. Once content is semantically annotated, visually
impaired people can use this semantic annotation as a means to access and explore
the content faster.

The W3C’s Web Content Accessibility Guidelines (WCAG)31 explain how to
make Web content more accessible to people with disabilities. As part of WCAG,
Authoring Tool Accessibility Guidelines (ATAG)32 and more specifically Accessible
Rich Internet Applications (WAI-ARIA)33 suite, define how authoring tools should
support accessibility requirements. Consequently, a challenge is to apply and
extend the series of accessibility guidelines proposed in ATAG for the purpose of
designing accessible SCAUIs.

Handling complexity in UIs. One important concern when designing SCAUIs
is how to make complex functionality available to the user in a simple way. There
are two issues in this context, which need to be addressed. The first one is how
to properly map complex functions and algorithms (e.g. entity disambiguation,
recommendation and other machine learning algorithms) to corresponding user
interface elements. The second issue is how to flatten the user’s learning curve by
providing adaptive and intelligent UIs which take user knowledge into account.
Many current SCA systems bear a bewildering amount of functions and algorithms
which confuses both the novice and expert users. This problem causes a significant
impediment for a broader use of SCA systems.

Addressing the complexity problem requires the creation of abstract models for
complex tasks as well as modeling the user characteristics and behavior. Ideally,
the SCAUI should present the users with concepts that are consistent with both
designer and users’ mental models of that phenomenon in the real world. The
above mentioned issues are well addressed in designing Geographic Information
System (GIS) UIs [Yu, 2006, Camara et al., 1999]. Now it is a challenge to rethink
these issues for the purpose of designing adaptive and flexible SCAUIs.

Formal and systematic methods for user interface evaluation. The results of
our survey clearly reflects the lack of formal and systematic UI evaluation methods
in evaluating SCA systems. As described in Table 3.4, there are several UI
evaluation methods which can be used in this context. Nielsen and Molich [Nielsen
and Molich, 1990] enumerate four general categories of systematic user interface
evaluation methods: formally by employing an analysis technique; automatically
by a computerized procedure; empirically by testing users performing experiments;
and heuristically.

In heuristic evaluation, evaluators inspect a user interface against a guideline to
identify usability problems that violate any items on the guideline [Kock et al.,
2009]. Our list of quality attributes and UI features (cf. Section 3.4) can be used

31http://www.w3.org/WAI/intro/wcag.php
32http://www.w3.org/WAI/intro/atag.php
33http://www.w3.org/TR/wai-aria/

59

http://www.w3.org/WAI/intro/wcag.php
http://www.w3.org/WAI/intro/atag.php
http://www.w3.org/TR/wai-aria/

3. Concepts and State of the Art

as a guideline for heuristic evaluation of SCA system UIs. This will require fewer
resources than testing with users and can be applied to the system during the
design phase.

Support of crowdsourcing. One of the missing aspects of developing collabo-
rative SCA systems is the support of crowdsourcing. There is a huge amount
of amateur and expert users who collaborate on and contribute to the Social
Web. Harnessing the power of such crowds can significantly enhance and widen
the results of semantic content authoring and annotation. Crowdsourcing as a
distributed problem-solving and production model is defined to address this aspect
of collective intelligence [Howe, 2006].

In order to support crowdsourcing, an SCA system needs to provide appropriate
UIs. In [Geiger et al., 2011], Geiger et al. analyze the respective characteristics
and requirements related to the design of crowdsourcing systems. Providing small
contributions with instant gratification, altruism and a way to establish a reputation
are some of these requirements. As a new challenge, it is worth to consider these
characteristics when designing SCAUIs.

UIs for ubiquitous devices. As discussed in Section 3.4, creating UIs for mobile
and ubiquitous devices is an issue which is not well addressed in the literature
yet. Mobile and ubiquitous devices are rapidly becoming the central computing
and communication devices in people’s lives. Ubiquitous computing (a.k.a every-
ware [Greenfield, 2006]) presents new challenges in user interface design. Emerging
ubiquitous devices are programmable and come with a growing set of facilities
including multi-touch screens and cheap powerful embedded sensors, such as an
accelerometer, digital compass, gyroscope, GPS, microphone, and camera [Lane
et al., 2010]. Utilizing these rich set of UI facilities when developing SCA systems
can improve the user experience in the process of semantic content authoring and
annotation. For example, users can easily share their real-time activities with SCA
system using mobile sensors or can use some gestures for annotating the content.

Another challenge here is the ability to provide offline functionality with local
updates for later synchronization with a web server. SCA systems should take into
account the reconciliation problem – the problem of potentially conflicting updates
from disconnected clients.

3.10. Conclusions

In this chapter we reported on the results of a systematic literature review
on user interfaces for semantic content authoring comprising initially 175 papers.
The review aimed to answer the RQ1 research questions defined in Section 1.3
by thorough analysis of the 31 most relevant papers. Before addressing the
defined research questions, we drew a terminology, which defines the basic concepts
used in the literature as well our survey. To answer the RQ1.1, we classified

60

3.10. Conclusions

existing approaches for SCA into two categories namely Top-Down and Bottom-Up
discussed in Section 3.3. Furthermore, Our data analysis revealed a set of quality
attributes for SCA systems together with the corresponding user interface features
which are suggested for their realization. These quality attributes plus the UI
features are used to answer the RQ1.2 and RQ1.3. In order to answer RQ1.4
and RQ1.5 we extracted the types of users as well as user evaluation methods
discussed in the primary studies and reflected the results in Section 3.7. Open
research and technological challenges in the domain of SCA systems were discussed
as well. Additionally, to show the applicability of the results, we performed an
in-depth comparison of three existing SCA systems according to the defined quality
attributes and described their strengths as well as their weaknesses.

Essential, foundational quality attributes for an SCA system are, in particular,
usability, generalizability, customizability and evolvability. A basic SCA system
should fulfill a reasonable level of user-friendliness and adopt to different situations
or use cases while providing mechanisms to tailor its functionality based on specific
user needs. It also should take into account issues such as consistency constraints
and content evolution, which are required for change management. Support of
collaboration, interoperability and scalability are quality attributes required when
an SCA system is employed in a community-driven environment with large amount
of users, systems and interactions. An SCA system should support standard formats
and provide appropriate UI elements for social networking including both human-
to-human as well as system-to-system interactions. Additionally, it should maintain
performance under an increased workload by supplying appropriate storage and
caching mechanisms. Automation and proactivity are quality attributes which
facilitate usability of SCA systems especially for non-skilled users. Portability and
accessibility are, as our survey indicates, not well addressed by the literature so
far. The demands for suitable UIs for mobile and ubiquitous devices are increasing
as powerful mobile computing devices are becoming more common. Furthermore,
providing accessible UIs for people with disabilities or special needs is another
requirement which should be taken into account when designing SCA systems.

61

Chapter 4

WYSIWYM User Interface Model

“Design is not just what it looks like and feels
like. Design is how it works.” — Steve Jobs

In this chapter, we present an approach inspired by the WYSIWYM metaphor
(What You See Is What You Mean), which addresses the issue of an integrated
visualization, exploration and authoring of semantically enriched un-structured
content. Our WYSIWYM concept formalizes the binding between semantic rep-
resentation models and UI elements for authoring, visualizing and exploration.
We analyze popular tree, graph and hyper-graph based semantic representation
models and elicit a list of semantic representation elements, such as entities, various
relationships and attributes. We provide a comprehensive survey of common UI
elements for authoring, visualizing and exploration, which can be configured and
bound to individual semantic representation elements. Our WYSIWYM concept
also comprises cross-cutting helper components based on the results achieved in
Chapter 3, which can be employed within a concrete WYSIWYM interface for the
purpose of automation, annotation, recommendation, personalization, etc.

The remainder of this chapter is structured as follows: In Section 4.1, we describe
the existing approaches for binding UIs to semantic models. Section 4.2 describes
the fundamental WYSIWYM concept proposed in this chapter. Subsections of
Section 4.2 present the different components of the WYSIWYM model. Finally,
Section 4.3 concludes with an outlook on next steps.1

4.1. Approaches for Semantic UI Models

In this section, we briefly describe the existing approaches which provide a
binding between UI components and semantic models.

4.1.1. Visual Mapping Techniques

Visual mapping techniques are knowledge representation techniques that graph-
ically represent knowledge structures. Most of them have been developed as
paper-based techniques for brainstorming, learning facilitation, outlining or to
elicit knowledge structures. According to their basic topology, most of them can
be related to the following fundamentally different primary approaches [Haller and
Abecker, 2010, Shneiderman, 2000]:

1The contents of this chapter have been published as [Khalili and Auer, 2014].

62

4.1. Approaches for Semantic UI Models

• Mind-Maps. Mind-maps are created by drawing one central topic in the
middle together with labeled branches and sub-branches emerging from it.
Instead of distinct nodes and links, mind-maps only have labeled branches.
A mind-map is a connected directed acyclic graph with hierarchy as its
only type of relation. Outlines are a similar technique to show hierarchical
relationships using tree structure. Mind-maps and outlines are not suitable
for relational structures because they are constrained to the hierarchical
model.

• Concept Maps. Concept maps consist of labeled nodes and labeled edges
linking all nodes to a connected directed graph. The basic node and link
structure of a connected directed labeled graph also forms the basis of many
other modeling approaches like ER diagrams and Semantic Networks. These
forms have the same basic structure as concept maps but with more formal
types of nodes and links.

• Spatial Hypertext. A spatial hypertext is a set of text nodes that are not
explicitly connected but implicitly related through their spatial layout, e.g.,
through closeness and adjacency — similar to a pin-board. Spatial hypertext
can show fuzzily related items. To fuzzily relate two items in a spatial
hypertext schema, they are simply placed near to each other, but possibly
not quite as near as to a third object. This allows for so-called “constructive
ambiguity” and is an intuitive way to deal with vague relations and orders.
Spatial Hypertext abandons the concept of explicitly interrelating objects.
Instead, it uses spatial positioning as the basic structure.

4.1.2. Structured Content Visualization

There are already many approaches and tools which address the binding between
data and UI elements for visualizing and exploring structured content. Dadzie and
Rowe [Dadzie and Rowe, 2011] present the most exhaustive and comprehensive
survey to date of these approaches. For example, Fresnel [Pietriga et al., 2006] is a
display vocabulary for core RDF concepts. Fresnel’s two foundational concepts are
lenses and formats. Lenses define which properties of an RDF resource, or group
of related resources, are displayed and how those properties are ordered. Formats
determine how resources and properties are rendered and provide hooks to existing
styling languages such as Cascading Style Sheets (CSS).
Parallax, Tabulator, Explorator, Rhizomer, Sgvizler, Fenfire, RDF-Gravity, IsaViz
and i-Disc for Topic Maps are examples of tools available for visualizing and
exploring structured data. In these tools the binding between semantics and UI
elements is mostly performed implicitly, which limits their versatility. However, an
explicit binding as advocated by our WYSIWYM model can be potentially added
to some of these tools.

In contrast to the structured content, there are few approaches and tools which

63

4. WYSIWYM User Interface Model

allow binding semantic data to UI elements within semantically enriched unstruc-
tured content. As an example, Dido [Karger et al., 2009] is a data-interactive
document which lets end users author semantic content mixed with unstructured
content in a Web page. Dido inherits data exploration capabilities from the
underlying Exhibit2 framework. Loomp as a prove-of-concept for the One Click
Annotation (OCA) [Heese et al., 2010] strategy is another example in this context
(cf. Section 3.8.3). It employs a partial mapping between UI elements and data to
hide the complexity of creating semantic data.

4.1.3. WYSIWYM

The first use of the WYSIWYM term occurred in 1995 aiming to capture the
separation of presentation and content when writing a document. The LyX editor 3

was the first WYSIWYM word processor for structure-based content authoring.
Instead of focusing on the format or presentation of the document, a WYSIWYM
editor preserves the intended meaning of each element. For example, page headers,
sections, paragraphs, etc. are labeled as such in the editing program, and displayed
appropriately in the browser. Another usage of the WYSIWYM term was by
Power et al. [?] in 1998 as a solution for Symbolic Authoring. In symbolic authoring
the author generates language-neutral “symbolic” representations of the content
of a document, from which documents in each target language are generated
automatically, using Natural Language Generation technology. In this What-You-
See-Is-What-You-Meant approach, the language generator was used to drive the
UI with support of localization and multilinguality. Using the WYSIWYM natural
language generation approach, the system generates a feed-back text for the user
that is based on a semantic representation. This representation can be edited
directly by the user by manipulating the feedback text.

The WYSIWYM term as defined and used in this thesis targets the novel aspect
of integrated visualization, exploration and authoring of unstructured and semantic
content. Two “You”s in our WYSIWYM concept refer to the end user (with no
or limited knowledge of Semantic Web) who is viewing an unstructured content
which is semantically enriched by himself. The “Mean” refers to the metadata or
semantics, which is encoded in the unstructured content viewed by user.

4.2. WYSIWYM Concept

In this section we introduce the fundamental WYSIWYM concept and formalize
key elements of the concept. Formalizing the WYSIWYM concept has a number
of advantages: First, the formalization can be used as a basis for design and
implementation of novel applications for authoring, visualization, and exploration of
semantic content. The formalization serves the purpose of providing a terminology

2http://simile-widgets.org/exhibit/
3http://www.lyx.org/

64

http://simile-widgets.org/exhibit/
http://www.lyx.org/

4.2. WYSIWYM Concept

Semantic Representation Data Models

Visualization

Techniques

Exploration

Techniques
Authoring

Techniques

Helper components

Bindings

Configs Configs Configs

WYSIWYM Interface

Figure 4.1.: Schematic view of the WYSIWYM model.

for software engineers and UI designers to communicate efficiently and effectively.
It provides insights into and an understanding of the requirements as well as
corresponding UI solutions for proper design and implementation of semantic
content management applications. Secondly, it allows evaluating and classifying
existing user interfaces according to the conceptual model in a defined way. This
will highlight the gaps in existing applications dealing with semantically enriched
documents and will help to optimize them based on the defined requirements.

Figure 4.1 provides a schematic overview of the WYSIWYM concept. The
rationale is that elements of a knowledge representation formalism (or data model)
are connected to suitable UI elements for visualization, exploration and authoring.
Formalizing this conceptual model results in three core definitions (1) for the
abstract WYSIWYM model, (2) bindings between UI and representation elements
as well as (3) a concrete instantiation of the abstract WYSIWYM model, which
we call a WYSIWYM interface.

Definition 1 (WYSIWYM model). The WYSIWYM model can be formally defined
as a quintuple (D, V,X, T,H) where:

• D is a set of semantic representation data models, where each Di ∈ D has
an associated set of data model elements EDi

;

• V is a set of tuples (v, Cv), where v is a visualization technique and Cv a set
of possible configurations for the visualization technique v;

• X is a set of tuples (x,Cx), where x is an exploration technique and Cx a
set of possible configurations for the exploration technique x;

• T is a set of tuples (t, Ct), where t is an authoring technique and Ct a set of
possible configurations for the authoring technique t;

• H is a set of helper components.

65

4. WYSIWYM User Interface Model

Semantic representation data models are techniques to define the meaning of data
within the context of its interrelationships with other data (cf. Section 4.2.1). Tree,
Graph and Hypergraph are examples of commonly used data models. Visualization
techniques include UI techniques for highlighting, associating and detail viewing of
semantic entities (cf. Section 4.2.2). Exploration techniques include UI techniques
for efficient browsing and navigating semantic data (cf. Section 4.2.3). Authoring
techniques include UI techniques for adding and editing semantic entities and
their relations (cf. Section 4.2.4). Helper components are cross-cutting aspects
to enhance and customize the user/application requirements of a WYSIWYM
interface (cf. Section 4.2.6).

The WYSIWYM model represents an abstract concept from which concrete
interfaces can be derived by means of bindings between semantic representation
model elements and configurations of particular UI elements.

Definition 2 (Binding). A binding b is a function which maps each element of a
semantic representation model e (e ∈ EDi

) to a set of tuples (ui, c), where ui is a
user interface technique ui (ui ∈ V ∪X ∪ T) and c is a configuration c ∈ Cui.

Figure 4.4 gives an overview on all data model (columns) and UI elements (rows)
and how they can be bound together using a certain configuration (cells). The
shades of gray in a certain cell indicate the suitability of a certain binding between
a particular UI and data model element.

For example, having tree-based semantic representation model, framing and
segmentation UI techniques can be used as external augmentation to visualize the
items in the text. It is also possible to use text formatting techniques as inline
augmentation for highlighting the items but since they might interfere with the
current text format, we assume a partial binding for them. A possible configuration
for this example binding is to set different border and text colors to distinguish
different item types.

Once a selection of data models and UI elements was made and both are bound
to each other encoding a certain configuration in a binding, we attain a concrete
instantiation of our WYSIWYM model called WYSIWYM interface.

Definition 3 (WYSIWYM interface). An instantiation of the WYSIWYM model
I called WYSIWYM interface now is a hextuple (DI , VI , XI , TI , HI , bI), where:

• DI is a selection of semantic representation data models (DI ⊂ D);

• VI is a selection of visualization techniques
(VI ⊂ V);

• XI is a selection of exploration techniques
(XI ⊂ X);

• TI is a selection of authoring techniques
(TI ⊂ T);

66

4.2. WYSIWYM Concept

Semantic expressiveness

C
o

m
p

le
x
it

y
 o

f
v
is

u
a
l

m
a
p

p
in

g

low high

h
ig

h

lo
w

Mind-maps

Concept maps

Spatial hypertext

Tree-based

Graph-based

Hypergraph-based

Microdata
Microformat

Topic Maps
 XTM
 LTM
 CTM
 AsTMa

RDF
 RDF/XML
 Turtle/N3/N-Triples
 RDFa
 JSON-LD

Figure 4.2.: Comparison of existing visual mapping techniques in terms of semantic
expressiveness and complexity of visual mapping.

• HI is a selection of helper components
(HI ⊂ H);

• bI is a binding which binds a particular occurrence of a data model element
to a visualization, exploration and/or authoring technique.

Note, that we limit the definition to one binding, which means that only one
semantic representation model is supported in a particular WYSIWYM interface at
a time. It could be also possible to support several semantic representation models
(e.g. RDFa and Microdata) at the same time. However, this can be confusing
to the user, which is why we deliberately excluded this case in our definition. In
the remainder of this sections we discuss the different parts of the WYSIWYM
concept in more detail.

4.2.1. Semantic Representation Models

Semantic representation models are conceptual data models to express the mean-
ing of information thereby enabling representation and interchange of knowledge.
Based on their expressiveness, we can roughly divide popular semantic representa-
tion models into the three categories tree-based, graph-based and hypergraph-based
(cf. Figure 4.2). Each semantic representation model comprises a number of
representation elements, such as various types of entities and relationships. For
visualization, exploration and authoring it is of paramount importance to bind the

67

4. WYSIWYM User Interface Model

most suitable UI elements to respective representation elements. In the sequel we
briefly discuss the three different types of representation models.

Tree-based. This is the simplest semantic representation model, where semantics
is encoded in a tree-like structure. It is suited for representing taxonomic knowledge,
such as thesauri, classification schemes, subject heading lists, concept hierarchies
or mind-maps. It is used extensively in biology and life sciences, for example,
in the APG III system (Angiosperm Phylogeny Group III system) of flowering
plant classification, as part of the Dimensions of the XBRL (eXtensible Business
Reporting Language)4 or generically in the SKOS5. Elements of tree-based semantic
representation usually include:

• E1: Item – e.g. Magnoliidae, the item representing all flowering plants.

• E2: Item type – e.g. biological term for Magnoliidae.

• E3: Item-subitem relationships – e.g. Magnoliidae referring to subitem
magnolias.

• E4: Item property value – e.g. the synonym flowering plant for the item
Magnoliidae.

• E5: Related items – e.g. the sibling item Eudicots to Magnoliidae.

Tree-based data can be serialized as Microdata or Microformats.

Graph-based. This semantic representation model adds more expressiveness
compared to simple tree-based formalisms. The most prominent representative
is the RDF data model (cf. Section 2.2), which can be seen as a set of triples
consisting of subject, predicate, object, where each component can be a URI, the
object can be a literal and subject as well as object can be a blank node. The
most distinguishing features of RDF from a simple tree-based model are: the
distinction of entities in classes and instances as well as the possibility to express
arbitrary relationships between entities. The graph-based model is suited for
representing combinatorial schemes such as concept maps. Graph-based models are
used in a very broad range of domains, for example, in the FOAF6 for describing
people, their interests and interconnections in a social network, in MusicBrainz 7 to
publish information about music albums, in the medical domain (e.g. DrugBank,
Diseasome, ChEMBL, SIDER) to describe the relations between diseases, drugs
and genes, or generically in the SIOC vocabulary8. Elements of RDF as a typical
graph-based data model are:

4www.xbrl.org/
5http://www.w3.org/2004/02/skos/
6http://www.foaf-project.org
7https://musicbrainz.org/
8http://rdfs.org/sioc/spec/

68

www.xbrl.org/
http://www.w3.org/2004/02/skos/
http://www.foaf-project.org
https://musicbrainz.org/
http://rdfs.org/sioc/spec/

4.2. WYSIWYM Concept

• E1: Instances – e.g. Warfarin as a drug.

• E2: Classes – e.g. anticoagulants drug for Warfarin.

• E3: Relationships between entities (instances or classes) – e.g. the interaction
between Aspirin as an antiplatelet drug and Warfarin which will increase
the risk of bleeding.

• E4: Literal property values – e.g. the halflife for the Amoxicillin.

– E41 : Value – e.g. 61.3 minutes.

– E42 : Language tag – e.g. en.

– E43 : Datatype – e.g. xsd:float.

RDF-based data can be serialized in various formats, such as RDFa, RDF/XML,
JSON-LD or Turtle/N3/N-Triples.

Hypergraph-based. A hypergraph is a generalization of a graph in which an
edge can connect any number of vertices. Since hypergraph-based models allow
n-ary relationships between arbitrary number of nodes, they provide a higher
level of expressiveness compared to tree-based and graph-based models. The
most prominent representative is the Topic Maps data model developed as an
ISO/IEC standard which consists of topics, associations and occurrences. The
semantic expressivity of Topic Maps is, in many ways, equivalent to that of
RDF, but the major differences are that Topic Maps (i) provide a higher level of
semantic abstraction (providing a template of topics, associations and occurrences,
while RDF only provides a template of two arguments linked by one relationship)
and (hence) (ii) allow n-ary relationships (hypergraphs) between any number of
nodes, while RDF is limited to triplets. The hypergraph-based model is suited for
representing complex schemes such as spatial hypertext. Hypergraph-based models
are used for a variety of applications. Amongst them are musicDNA9 as an index
of musicians, composers, performers, bands, artists, producers, their music, and
the events that link them together, TM4L (Topic Maps for e-Learning), clinical
decision support systems and enterprise information integration. Elements of Topic
Maps as a typical hypergraph-based data model are:

• E1: Topic name – e.g. University of Leipzig.

• E2: Topic type – e.g. organization for University of Leipzig.

• E3: Topic associations – e.g. member of a project which has other organi-
zation partners.

• E4: Topic role in association e.g. coordinator.

9http://www.musicdna.info/

69

4. WYSIWYM User Interface Model

Figure 4.3.: Screenshots of user interface techniques for visualization and explo-
ration: 1-framing using borders, 2-framing using backgrounds, 3-video
subtitle, 4-line connectors and arrow connectors, 5-bar layouts, 6-
text formatting, 7-image color effects, framing and line connectors,
8-expandable callout, 9-marking with icons, 10-tooltip callout, 11-
faceting

• E5: Topic occurrences – e.g. address.

– E51 : value – e.g. Augustusplatz 10, 04109 Leipzig.

– E52 : datatype – e.g. text.

Topic Maps-based data can be serialized as an XML-based syntax called XTM
(XML Topic Map)10, LTM (Linear Topic Map Notation)11, CTM (Compact Topic
Maps Notation)12 and AsTMa (Asymptotic Topic Map Notation)13.

4.2.2. Visualization

The primary objectives of visualization are to present, transform, and convert
semantic data into a visual representation, so that, humans can read, query and

10www.topicmaps.org/xtm/1.0/
11http://www.ontopia.net/download/ltm.html
12http://www.isotopicmaps.org/ctm/
13http://astma.it.bond.edu.au/

70

www.topicmaps.org/xtm/1.0/
http://www.ontopia.net/download/ltm.html
http://www.isotopicmaps.org/ctm/
http://astma.it.bond.edu.au/

4.2. WYSIWYM Concept

edit them efficiently. We divide existing techniques for visualization of knowledge
encoded in text, images and videos into the three categories Highlighting, Asso-
ciating and Detail view. Highlighting includes UI techniques which are used to
distinguish or highlight a part of an object (i.e. text, image or video) from the
whole object. Associating deals with techniques that visualize the relation between
some parts of an object. Detail view includes techniques which reveal detailed
information about a part of an object. For each of the above categories, the related
UI techniques are as follows:

- Highlighting.

• V1: Framing and Segmentation (borders, overlays and backgrounds). This
technique can be applied to text, images and videos, we enclose a semantic
entity in a colored border, background or overlay. Different border styles
(colors, width, types), background styles (colors, patterns) or overlay styles
(when applied to images and videos) can be used to distinguish different
types of semantic entities (cf. Figure 4.3 no. 1, 2). The technique is already
employed in social networking websites such as Google Plus and Facebook to
tag people within images.

• V2: Text formatting (color, font, size, margin, etc.). In this technique different
text styles such as font family, style, weight, size, color, shadows, margin and
other text decoration techniques are used to distinguish semantic entities
within a text (cf. Figure 4.3 no. 6). The problem with this technique is
that in an HTML document, the applied semantic styles might overlap with
existing styles in the document and thereby add ambiguity to recognizing
semantic entities.

• V3: Image color effects. This technique is similar to text formatting but
applied to images and videos. Different image color effects such as bright-
ness/contrast, shadows, glows, bevel/emboss are used to highlight semantic
entities within an image (cf. Figure 4.3 no. 7). This technique suffers from
the problem that the applied effects might overlap with the existing effects
in the image thereby making it hard to distinguish the semantic entities.

• V4: Marking (icons appended to text or image). In this technique, which
can be applied to text, images and videos, we append an icon as a marker to
the part of object which includes the semantic entity (cf. Figure 4.3 no. 9).
The most popular use of this technique is currently within maps to indicate
specific points of interest. Different types of icons can be used to distinguish
different types of semantic or correlated entities.

• V5: Bleeping. A bleep is a single short high-pitched signal in videos. Bleeping
can be used to highlight semantic entities within a video. Different type of
bleep signals can be defined to distinguish different types of semantic entities.

71

4. WYSIWYM User Interface Model

• V6: Speech (in videos). In this technique a video is augmented by some
speech indicating the semantic entities and their types within the video.

- Associating.

• V7: Line connectors. Using line connectors is the simplest way to visualize the
relation between semantic entities in text, images and videos (cf. Figure 4.3
no. 4). If the value of a property is available in the text, line connectors
can also reflect the item property values. Problematic is that normal line
connectors cannot express the direction of a relation.

• V8: Arrow connectors. Arrow connectors are extended line connectors with
arrows to express the direction of a relation in a directed graph.

Besides the line and arrow connectors techniques which explicitly visualize the
association between entities, implicit techniques defined as Gestalt principles [John-
son, 2014] can be used for modeling association. These techniques are psychological
assumptions that impose structure for human visual perception. Principles such
as proximity, similarity, continuity, closure, symmetry, figure/ground and common
fate can be used to affect our perception of whether and how the objects are
organized into groups. Discussing these principles are out of the scope of this work.

- Detail view.

• V9: Callouts. A callout is a string of text connected by a line, arrow, or
similar graphic to a part of text, image or video giving information about
that part. It is used in conjunction with a cursor, usually a pointer. The user
hovers the pointer over an item, without clicking it, and a callout appears
(cf. Figure 4.3 no. 10). Callouts come in different styles and templates such
as infotips, tooltips, hint and popups. Different sort of metadata can be
embedded in a callout to indicate the type of semantic entities, property
values and relationships. Another variant of callouts is the status bar which
displays metadata in a bar appended to the text, image or video container. A
problem with dynamic callouts is that they do not appear on mobile devices
(by hover), since there is no cursor.

• V10: Video subtitles. Subtitles are textual versions of the dialog or commentary
in videos. They are usually displayed at the bottom of the screen and are
employed for written translation of a dialog in a foreign language. Video
subtitles can be used to reflect detailed semantics embedded in a video scene
when watching the video. A problem with subtitles is efficiently scaling the
text size and relating text to semantic entities when several semantic entities
exist in a scene.

72

4.2. WYSIWYM Concept

4.2.3. Exploration

To increase the effectiveness of visualizations, users need to be capable to dy-
namically navigate and explore the visual representation of the semantic data. The
dynamic exploration of semantic data will result in faster and easier comprehension
of the targeted content. Techniques for exploration of semantics encoded in text,
images and videos include:

• X1: Zooming. In a zoomable UI, users can change the scale of the viewed area
in order to see more detail or less. The zooming elements and techniques vary
on different applications. Zooming in a semantic entity can reveal further
details such as property value or entity type. Zooming out can be employed
to reveal the relations between semantic entities in a text, image or video.
Supporting rich dynamics by configuring different visual representations for
semantic objects at different sizes is a requirement for a zoomable UI. The
iMapping approach[Haller and Abecker, 2010] which is implemented in the
semantic desktop is an example of the zooming technique.

• X2: Faceting. Faceted browsing is a technique for accessing information
organized according to a faceted classification system, allowing users to
explore a collection of information by applying multiple filters (cf. Figure 4.3
no. 11). Defining facets for each component of the predefined semantic
models enable users to browse the underlying knowledge space by iteratively
narrowing the scope of their quest in a predetermined order. One of the main
problems with faceted browsers is the increased number of choices presented
to the user at each step of the exploration [Deligiannidis et al., 2007].

• X3: On-demand highlighting. Unlike the highlighting approach discussed
in the visualization methods, on-demand highlighting is used to navigate
the semantic entities encoded in text in a dynamic manner. One technique
to realize on-demand highlighting is Bar layout. In the bar layout, each
semantic entity within the text is indicated by a vertical bar in the left or
right margin (cf. Figure 4.3 no. 5). The colour of the bar reflects the type
of the entity. The bars are ordered by length and order in the text. Nested
bars can be used to show the hierarchies of entities. Semantic entities in the
text are highlighted by a mouse-over the corresponding bar. This approach
is employed in Loomp [Luczak-Roesch, 2009].

• X4: Expanding & Drilling down. Expandable callouts are interactive and
dynamic callouts which enable users to explore the semantic data associated
to a predefined semantic entity (cf. Figure 4.3 no. 8). Drilling down in a
callout enables users to move from summary information to detailed data by
focusing in on entities. This technique is employed in OntosFeeder [Klebeck
et al., 2011].

73

4. WYSIWYM User Interface Model

4.2.4. Authoring

Semantic authoring aims to add more meaning to digitally published documents.
If users do not only publish the content, but at the same time describe what it is
they are publishing, then they have to adopt a structured approach to authoring. A
semantic authoring UI is a human accessible interface with capabilities for writing
and modifying semantically enriched documents. The following techniques can be
used for authoring of semantics encoded in text, images and videos:

• T1: Form editing. In form editing, a user employs existing form elements
such as input/check/radio boxes, drop-down menu, slider, spinner, buttons,
and date/color picker, etc. for content authoring.

• T2: Inline edit. Inline editing is the process of editing items directly in
the view by performing simple clicks, rather than selecting items and then
navigating to an edit form and submitting changes from there.

• T3: Drawing. Drawing as part of informal user interfaces [Lin et al.,],
provides a natural human input to annotate an object by augmenting the
object with human-understandable sketches. For instance, users can draw
a frame around semantic entities; draw a line between related entities etc.
Special shapes can be drawn to indicate different entity types or entity roles
in a relation.

• T4: Drag and drop. Drag and drop is a pointing device gesture in which the
user selects a virtual object by grabbing it and dragging it to a different
location or onto another virtual object. In general, it can be used to invoke
many kinds of actions, or create various types of associations between two
abstract objects.

• T5: Context menu. A context menu (also called contextual, shortcut, or
pop-up menu) is a menu that appears upon user interaction, such as a right
button mouse click. A context menu offers a limited set of choices that are
available in the current state, or context.

• T6: (Floating) Ribbon editing. A ribbon is a command bar that organizes
functions into a series of tabs or toolbars at the top of the editable content.
Ribbon tabs/toolbars are composed of groups, which are a labeled set of
closely related commands. A floating ribbon is a ribbon that appears when
user rolls the mouse over a target area. A floating ribbon increases usability
by bringing edit functions as close as possible to the user’s point of focus. The
Aloha WYSIWYG editor 14 is an example of floating ribbon based content
authoring.

14http://aloha-editor.org

74

http://aloha-editor.org

4.2. WYSIWYM Concept

• T7: Voice commands. Voice commands permit the user’s hands and eyes to
be busy with another task, which is particularly valuable when users are in
motion or outside. Users tend to prefer speech for functions like describing
objects, sets and subsets of objects [Oviatt et al., 2000]. By adding special
signals to input voice, users can author semantic content from the scratch.

• T8: (Multi-touch) gestures. A gesture is a form of non-verbal communication
in which visible bodily actions communicate particular messages. Techni-
cally, different methods can be used for detecting and identifying gestures.
Movement-sensor-based and camera-based approaches are two commonly
used methods for the recognition of in-air gestures [Loecken et al., 2012].
Multi-touch gestures are another type of gestures, which are defined, to
interact with multi-touch devices such as modern smartphones and tablets.
Users can use gestures to determine semantic entities, their types and rela-
tionship among them. The main problem with gestures is their high level of
abstraction, which makes it hard to assert concrete property values. Special
gestures can be defined to author semantic entities in text, images and videos.

4.2.5. Bindings

Figure 4.4 surveys possible bindings between the user interface and semantic
representation elements.

The bindings were derived based on the following methodology:

1. We first analyzed existing semantic representation models and extracted the
corresponding elements for each semantic model.

2. We performed an extensive literature study regarding existing approaches
for visual mapping as well as approaches addressing the binding between
data and UI elements. If the approach was explicitly mentioning the binding
composed of UI elements and semantic model elements, we added the binding
to our mapping table.

3. We analyzed existing tools and applications which were implicitly addressing
the binding between data and UI elements.

4. Finally, we followed a predictive approach. We investigated additional UI
elements which are listed in existing HCI glossaries and carefully analyzed
their potential to be connected to a semantic model element.

Although we deem the bindings to be fairly complete, new UI elements might be
developed or additional data models (or variations of the ones considered) might
appear, in this case the bindings can be easily extended.

Partial binding indicates the situation when a UI technique does not completely
cover a semantic model element but still can be used in particular cases. For
example, different text colors can be used to highlight predefined item types in

75

4. WYSIWYM User Interface Model

text but since the colors might interfere with the current colors in the text (in case
of HTML document), we assign this binding as partial binding. Another example
is the line connectors used to represent the relation between items in a tree or
graph-based model. In this case, on the contrary to arrow connectors, since we
cannot determine the source and destination of the line, we are unable to model
directional relations completely, thereby, a partial binding is assigned.

The asterisks in Figure 4.4, indicate the cases when the metadata value is
explicitly available in the text and the user just needs to provide the connection
(e.g. imagine that we have Berlin and Germany mentioned in the text and we
want to assign the relation isCapitalOf).

The following binding configurations (extracted from the literature and current
tools) are available and referred to from the cells of Figure 4.4:

• Defining a special border or background style (C1), text style (C2), image
color effect (C4), beep sound (C5), bar style (C6), sketch (C7), draggable or
droppable shape (C8), voice command (C9), gesture (C10) or a related icon
(C3) for each type.

• Progressive shading (C11) by defining continuous shades within a specific
color scheme to distinguish items in different levels of the hierarchy.

• Hierarchical bars (C12) by defining special styles for nested bars.

• Grouping by similar border or background style (C13), text style (C14), icons
(C15) or image color effects (C16).

For example, a user can define a set of preferred border colors to distinguish
different item types (e.g. Persons, Organizations or Locations) or to group related
items (e.g. all the cities in Germany).

76

4.2. WYSIWYM Concept

* If value is available in the text/subtitle.

No binding Partial binding Full binding

Tree-based

(e.g. Taxonomies)

Graph-based

(e.g. RDF)

Hypergraph-based

(e.g. Topic Maps)

It
e
m

It
e
m

 t
y
p
e

It
e
m

-s
u
b
it
e
m

It
e
m

 p
ro

p
e
rt

y
 v

a
lu

e

R
e
la

te
d
 I

te
m

s

In
s
ta

n
c
e

C
la

s
s

R
e
la

ti
o
n
s
h
ip

s
 b

e
tw

e
e
n

e
n
ti
ti
e
s

Literal property

values

T
o
p
ic

T
o
p
ic

 t
y
p
e

T
o
p
ic

 a
s
s
o
c
ia

ti
o
n
s

T
o
p
ic

 r
o
le

 i
n
 a

s
s
o
c
ia

ti
o
n Topic

Occurre

nces

V
a
lu

e

L
a
n
g
u
a
g
e
 t

a
g

D
a
ta

ty
p
e

V
a
lu

e

D
a
ta

ty
p
e

Structure

encoded in:
UI categories UI techniques

V
is

u
a
li

z
a
ti

o
n

text

Highlighting

Framing and

segmentation (borders,

overlays, backgrounds)

C1 C11 C13 C1 C1

Text formatting (color,

font, size etc.)
C2 C11 C14 C2 C2

Marking (appended icons) C3 C15 C3 C3

Associating
Line connectors * * *

Arrow connectors * * *

Detail view
Callouts

(infotips, tooltips, popups)

images

Highlighting

Framing and

segmentation (borders,

overlays, backgrounds)

C1 C11 C13 C1 C1

Image color effects C4 C11 C16 C4 C4

Marking (appended icons) C3 C15 C3 C3

Associating
Line connectors

Arrow connectors

Detail view
Callouts

(infotips, tooltips, popups)

videos

Highlighting

Framing and

segmentation (borders,

overlays, backgrounds)

C1 C11 C13 C1 C1

Image color effects C4 C11 C16 C4 C4

Marking (appended icons) C3
C15 C3

C3

Bleeping C5 C5 C5

Speech

Associating
Line connectors * * *

Arrow connectors * * *

Detail view

Callouts

(infotips, tooltips, popups)

Subtitle

E
x
p

lo
ra

ti
o

n text

Zooming

Faceting

On-demand highlighting C5 C12 C5 C5

Expanding & Drilling down

images
Zooming

Faceting

videos Faceting (excerpts)

A
u

th
o

ri
n

g

text, images,

videos

Form editing

Inline edit

Drawing C7 C7 C7 C7

Drag and drop C8 C8 C8 C8

Context menu

(Floating) Ribbon editing

Voice commands C9 C9 C9 C9

(Multi-Touch) Gestures C10 C10 C10 C10

Figure 4.4.: Possible bindings between user interface and semantic representation
model elements.

77

4. WYSIWYM User Interface Model

4.2.6. Helper Components

In order to facilitate, enhance and customize the WYSIWYM model, we utilize
a set of helper components, which implement cross-cutting aspects. These helper
components are mainly derived from the quality attributes discussed in Section 3.4.
A helper component acts as an extension on top of the core functionality of
the WYSIWYM model. The following components can be used to improve the
quality of a WYSIWYM UI depending on the requirements defined for a specific
application domain:

• H1: Automation means the provision of facilities for automatic annotation
of text, images and videos to reduce the need for human work and thereby
facilitating the efficient annotation of large item collections. For example,
users can employ existing NLP services (e.g. named entity recognition,
relationship extraction) for automatic text annotation.

• H2: Real-time tagging is an extension of automation, which allows to cre-
ate annotations proactively while the user is authoring a text, image or
video. This will significantly increase the annotation speed and users are not
distracted since they do not have to interrupt their current authoring task.

• H3: Recommendation means providing users with pre-filled form fields, sug-
gestions (e.g. for URIs, namespaces, properties), default values etc. These
facilities simplify the authoring process, as they reduce the number of re-
quired user interactions. Moreover, they help preventing incomplete or empty
metadata. In order to leverage other user’s annotations as recommenda-
tions, approaches like Paragraph Fingerprinting [Hong and Chi,] can be
implemented.

• H4: Personalization and context-awareness describes the ability of the UI
to be configured according to users’ contexts, background knowledge and
preferences. Instead of being static, a personalized UI dynamically tailors
its visualization, exploration and authoring functionalities based on the user
profile and context.

• H5: Collaboration and Crowdsourcing enable collaborative semantic author-
ing, where the authoring process can be shared among different authors at
different locations. There are a vast amounts of amateur and expert users
which are collaborating and contributing on the Social Web. Crowdsourcing
harnesses the power of such crowds to significantly enhance and widen the
results of semantic content authoring and annotation. Generic approaches
for exploiting single-user Web applications for shared editing [Heinrich et al.,
2012] can be employed in this context.

• H6: Accessibility means providing people with disabilities and special needs
with appropriate UIs. The underlying semantic model in a WYSIWYM UI

78

4.3. Conclusions

can allow alternatives or conditional content in different modalities to be
selected based on the type of the user disability and information need.

• H7: Multilinguality means supporting multiple languages in a WYSIWYM
UI when visualizing, exploring or authoring the content.

4.3. Conclusions

In this chapter, we discussed the WYSIWYM concept to answer the research
question RQ2 (cf. Section 1.3) for bridging the gap between unstructured and
semantic content. With the WYSIWYM concept we presented in this chapter an
approach for integrated visualization, exploration and authoring of unstructured
and semantic content. The WYSIWYM model binds elements of a knowledge
representation formalism (or data model) to a set of suitable UI elements for
visualization, exploration and authoring. Based on such a declarative binding
mechanism, we aim to increase the flexibility, reusability and development efficiency
of semantics-rich user interfaces.

79

Chapter 5

From WYSIWYG to WYSIWYM

“Progress is impossible without change, and
those who cannot change their minds cannot
change anything.” — George Bernard Shaw

In this chapter we present the RDFaCE approach for enriching WYSIWYG text
authoring with WYSIWYM approach discussed in Chapter 4 for the creation of
rich semantic content. The contributions of this chapter are in particular:

1. An architecture and implementation of a semantic annotation and authoring
environment called RDFaCE (RDFa Content Editor) based on different views
on the semantic content including a WYSIWYM view.

2. An extensive evaluation of five automatic text annotation APIs wrt. precision
and recall in the domains wiki, blog and news articles.

3. An approach for the combination of different text annotation services, that
yields superior performance compared to each individual approach.

4. Three use cases of RDFaCE including semantic blogging, data journalism
and search engine optimization.

5. An evaluation of the RDFaCE content authoring environment using a sizable
user group and measuring subjective as well as objective usage characteristics.

The rest of this chapter is structured as follows: Section 5.1 provides an overview
on the WYSIWYG concept. Section 5.2 introduces the RDFaCE as an implemen-
tation of the WYSIWYM concept. Section 5.3 presents the different views for
semantic text authoring. In Section 5.4, the combination of different NLP APIs for
bootstrapping the semantic annotation process is discussed. Section 5.5 introduces
three use cases of RDFaCE. Section 5.6 reports on RDFaCE usability evaluation
results. A comparison to the related work is presented in Section 5.7 and finally
Section 5.8 concludes the chapter.1

5.1. WYSIWYG

The term WYSIWYG as an acronym for What-You-See-Is-What-You-Get is
used in computing to describe a system in which content (text and graphics)

1The contents of this chapter have been published as [Khalili et al., 2012a, Khalili and Auer,
2013b].

80

5.2. RDFaCE (RDFa Content Editor)

displayed on-screen during editing appears in a form closely corresponding to its
appearance when printed or displayed as a finished product. The first usage of the
term goes back to 1974 in the print industry to express the idea that what the user
sees on the screen is what the user gets on the printer. Xerox PARC’s Bravo was
the first WYSIWYG editor-formatter [Myers, 1998]. It was designed by Butler
Lampson and Charles Simonyi who had started working on these concepts around
1970 while at Berkeley. Later on by the emergence of Web and HTML technology,
the WYSIWYG concept was also utilized in Web-based text editors. The aim
was to reduce the effort required by users to express the formatting directly as
valid HTML markup. In a WYSIWYG editor users can edit content in a view
which matches the final appearance of published content with respect to fonts,
headings, layout, lists, tables, images and structure. Because using a WYSIWYG
editor may not require any HTML knowledge, they are often easier for an average
computer user to get started with. The first programs for building Web pages
with a WYSIWYG interface were Netscape Gold, Claris HomePage, and Adobe
PageMill.

WYSIWYG text authoring is meanwhile ubiquitous on the Web and part of
most content creation and management workflows. It is part of CMSs, Weblogs,
Wikis, product data management systems and online shops, just to mention a few.
However, the WYSIWYG model has been criticized, primarily for the verbosity,
poor support of semantics and low quality of the generated code and there have
been voices advocating a change towards a WYSIWYM (What-You-See-Is-What-
You-Mean) model [Spiesser and Kitchen, , Sauer, 2006].

5.2. RDFaCE (RDFa Content Editor)

RDFaCE is an implementation of the WYSIWYM concept to integrate the
semantic annotation directly into the content creation process and to make the
annotation as easy and non-intrusive as possible. This is achieved by accompanying
the classical WYSIWYG and source views with views facilitating the semantic
annotation. The rationale behind our transition from WYSIWYG to WYSIWYM
is to provide an environment to the user, which she is sufficiently familiar with,
but at the same time enables her to understand, access and work with semantic
annotations.

The RDFaCE system architecture is depicted in Figure 5.1 and consists of three
layers. The foundation layer on which we ground the RDFaCE plugin includes
the TinyMCE Rich Text Editor 2. This open source HTML editor was chosen
because it is very flexible to extend and is used in many popular CMSs, Weblogs,
Wikis, discussion forums, etc. Therefore, by focusing efforts on this one particular
editor, it is possible to quickly propagate accessible semantic authoring practices
to a number of other tools [Treviranus, 2008]. The RDFaCE implementation

2http://tinymce.moxiecode.com

81

http://tinymce.moxiecode.com

5. From WYSIWYG to WYSIWYM

TinyMCE Rich Text Editor

RDFaCE plugin

External Web APIs

RDFa/Microdata DOM

Manipulator

RDF Triple Browser/Editor

Inline Semantic Visualizer

Annotator UI

Online Resource Suggester

RDFa/Microdata Proxy for

Enricher APIs

RDF Namespace Lookup Online Resource Locator Semantic Text Enricher

updates

sends changes

updates

delivers annotation

sends resource

delivers annotation

usessends resource

uses

uses

visualizes

calls

Service

Utility

Component

Relation

Javascript Utility Libraries
- jQuery

- RdfQuery

- TinyMCE API

Figure 5.1.: RDFaCE system architecture.

is open-source and available for download together with an explanatory video
and online demo at http://rdface.aksw.org. RDFaCE includes the following
components:

Annotator UI. This component uses the TinyMCE API as well as jQuery UI to
provide user friendly interfaces for semantic content editing based on RDFa and
Microdata (cf. Section 3.3.1). As shown in Figure 5.2, the normal annotation
procedure consists of four steps: 1) Defining appropriate namespaces. 2) Selecting
a fragment of the text. 3) Assigning the subject (and type) to be used for the
selected fragment. 4) Inserting triples by assigning properties. Besides these
steps, RDFaCE provides some shortcuts to expedite the creation of new triples.
For instance users can use the context menu and select from a list of predefined
properties to instantly add a triple. After annotations are received by users, they
are delivered to RDFa/Microdata Document Object Models (DOMs) manipulator.

RDFa/Microdata DOM Manipulator. This component is responsible for ma-
nipulating the Document Object Model (DOM) according to the desired RDFa or
Microdata annotation. The simplest solution to add RDFa/Microdata attributes

82

http://rdface.aksw.org

5.2. RDFaCE (RDFa Content Editor)

to content is using tags. For each new annotation, a new can be
created containing related RDFa/Microdata attributes. Although this approach is
simple to implement it generates a lot of redundant tags. It might also
result in invalid HTML code when annotating a block of content which already has
a <div> tag. This is due to the fact, that div is a block-level element whereas span
is an inline element according to the HTML standard. To cope with these issues,
the RDFa DOM Manipulator component tries to find the valid and optimized
annotation which manipulates original content as minimally as possible. Before
adding a new tag for annotation, it tries to see whether it is possible to add the
annotation to an existing tag. If this is possible, it will update the current tag
rather than adding a new HTML tag. In case a new tag is required, it also employs
either or <div> tags depending on whether the content is a block or inline
element to prevent invalidness of HTML code.

Inline Semantic Visualizer. The main goal of the inline semantic visualizer is
to provide a kind of on-demand visualization, which can be included/excluded
on the fly within the WYSIWYG content editing. This component uses a set of
predefined CSS styles to distinguish the semantically annotated content from the
normal content. To visualize semantic annotations without modifying the content,
dynamic style sheets are used. Different types of borders with different colors are
used to present RDFa/Microdata annotated content which might be overlapping.
To show the value of RDFa/Microdata attributes which are not visible in normal
text, CSS tooltips are used. To prevent altering content, tooltips are created on
the fly each time the user moves the mouse pointer over annotated content. Each
time a new annotation is added by RDFa DOM manipulator, this component is
called to visualize the editor.

RDF Triple Browser and Editor. This component extracts the RDF triples
embedded in the text and provides the edit and delete functionality for these triples.
This component is in a mutual relation to rich text editor and is dynamically
updated when a new annotation is added to the text (also the text editor is
updated when a triple is modified here). When user edits or deletes a triple,
these changes are delivered to RDFa/Microdata DOM manipulator to update the
content correspondingly.

Online Resource Suggester. This component provides the user with a set of
accessible online resources. In order to perform this task, it accesses a number of
external Web APIs. The Online Resource Suggester works in a close relation to
Annotator UI. It facilitates the task of annotating content by searching the terms
which are selected by user and suggesting corresponding URIs.

RDFa/Microdata Proxy for Enricher APIs. This component acts as a proxy to
make the output of enricher APIs (i.e. NLP text annotation services) consumable as

83

5. From WYSIWYG to WYSIWYM

RDFa. Most of the current text enricher APIs do not provide any RDFa/Microdata
output. Therefore, we need to convert their generated output into RDFa/Microdata.
To do this, the RDFa/Microdata proxy first sends the content to an external
semantic text enrichment service. The output of the service is then converted to an
standard format which includes label, URI, type, positions and properties related
to the extracted entities. Then a mapping to a desired vocabulary is performed in
order to make appropriate annotations. These annotations are delivered to the
RDFa/Microdata DOM manipulator to update the content correspondingly. In
case an URI is needed for an entity, the online resource suggester is used to assign
an URI to the entity.

All the former components use Javascript utility libraries like jQuery and RDF-
Query3 to implement their functions. To facilitate semantic annotation of content,
RDFaCE also uses a number of external Web APIs. Online APIs are invoked to
carry out the following functions:

• RDF Namespace Lookup: In order to avoid that users have to type complete
URIs, common namespace prefixes can be used everywhere in RDFaCE.
These are looked-up using the prefix.cc service. Furthermore, in case users
want to add a new property for which they do not even know an appropriate
vocabulary, RDFaCE can look-up an appropriate vocabulary and property
resource using the Swoogle4 service.

• Online Resource Locating : Finding an appropriate URI for the resources
which are selected by users can facilitate annotation process to a good extend.
When users select a part of the text and want to create a statement about
the respective entity, the online resource locator will do a Sindice5 search to
find suitable resources that match with the users selected item.

• Semantic Text Enrichment : Starting to annotate a document from the
scratch is very tedious and time consuming. There are already some Natural
Language Processing (NLP) APIs available on the Web which extract specific
entities and relations from the text. By using these APIs, we can provide a
good starting point for further user annotations. Users then can modify and
extend these automatically pre-annotated content. RDFaCE currently uses
the OpenCalais, Ontos, Alchemy, Extractiv and Evri NLP APIs6 to enrich
the text.

3http://code.google.com/p/rdfquery/
4http://swoogle.umbc.edu/
5http://sindice.com/
6These Web APIs are available at: OpenCalais - http://www.opencalais.com, Ontos - http:

//www.ontos.com, Alchemy - http://www.alchemyapi.com, Extractiv - http://extractiv.

com and Evri - http://www.evri.com

84

prefix.cc
http://code.google.com/p/rdfquery/
http://swoogle.umbc.edu/
http://sindice.com/
http://www.opencalais.com
http://www.ontos.com
http://www.ontos.com
http://www.alchemyapi.com
http://extractiv.com
http://extractiv.com
http://www.evri.com

5.3. Views for Semantic Text Authoring

Figure 5.2.: Annotation user interface.

5.3. Views for Semantic Text Authoring

The main innovation of RDFaCE is the support of different views on the
semantically annotated content. RDFaCE supports four different views for semantic
text authoring, which are shown in Figure 5.3 and explained in more detail in
the sequel. The user can easily switch between these views and even use them in
parallel. The views are synchronized so that applying changes in one of the views
automatically updates other views.

WYSIWYG View The What-You-See-Is-What-You-Get view as discussed in
Section 5.1 is the classical interface for rich-text authoring and used by authors,
journalists etc. WYSIWYG text authoring is meanwhile ubiquitous on the Web
and part of most content creation and management workflows. Users authoring
content are used to interact with a WYSIWYG views and there exists a wide
variety of WYSIWYG editors and editing components, which can be used on the

85

5. From WYSIWYG to WYSIWYM

Figure 5.3.: The four views for semantic text authoring.

Web or offline.

WYSIWYM View RDFaCE employs the What-You-See-Is-What-You-Mean
model described in Chapter 4 as an extension of the WYSIWYG view, which
highlights named entities and other semantic information. Figure 5.4 shows a
screenshot of different UI bindings employed in RDFaCE. The highlighting is real-
ized with special CSS3 selectors for the RDFa/Microdata annotations. They are
thus easily configurable in terms of color borders, backgrounds etc. When pointing
with the mouse on a highlighted annotation RDFaCE shows additional information
concerning the particular annotation as a tooltip. RDFaCE also supports editing
in the WYSIWYM view by letting a user select entities she wants to annotate and
provisioning of respective annotation functionality either via the context menu or
a specific form, which opens as an overlay.

RDF Triple View This view summarizes all the facts, which can be extracted
from the annotated text. It provides a deeper semantic view when compared to
WYSIWYM view. There might be some triples not visible in the WYSIWYM
view (e.g. annotations hidden using the CSS display:none style) but visible in
this view. Since the triple view reveals all the triples embedded in the text, it can
be called as WYMIWYS (What-You-Mean-Is-What-You-See) view. The triple

86

5.4. Combining NLP-API results

Figure 5.4.: RDFaCE WYSIWYM implementation (T6 indicates the RDFaCE
menu bar, V1 – the framing of named entities in the text, V9 – a
callout showing additional type information, T5 – a context menu for
revising annotations).

view is (as all other views) updateable, i.e. facts can be directly deleted, which
results in the removal of the corresponding RDFa/Microdata annotations. The
triple view is useful for curators and to a lesser extend for the authors for quickly
verifying that entities and facts were correctly annotated.

Source Code View Finally, the source code view shows the HTML source of
the article including the RDFa/Microdata annotations. This view is primarily
intended for software engineers supervising the publication workflow as well as
knowledge engineers. Since all formating and interactive functionality (e.g. tooltips)
is integrated via dynamic linking of CSS3 stylesheets with special selectors for the
RDFa annotations, the source code view is not spoiled with any markup related
to the WYSIWYM visualization.

5.4. Combining NLP-API results

One of the main features supported by RDFaCE is combining the results of
multiple NLP APIs. Using this approach, we can harness synergies arising from
the combination of different approaches for automatic text annotation. Users can

87

5. From WYSIWYG to WYSIWYM

Figure 5.5.: Generated results of different NLP APIs for article #1.

select a set of NLP APIs and determine how they want to combine the results.
The combination can be performed based on the agreement between two or more
of the involved APIs.

Figure 5.5 shows the annotation results of the 5 different NLP APIs Alchemy,
Extractive, OpenCalais, Ontos and Evri for a sample text. On the left, a heatmap
visualization reflects the list of items recognized by each API. Black and dark
green cells indicate cases that need disambiguation. Black cells indicate that there
is a conflict between two or more APIs when recognizing the type of a common
entity. In this case we have to investigate what the correct type is. Dark green
cells indicate that an entity is recognized only by one API. In this case, the error
probability is high and further investigation is required.

We use Precision,Recall and F-measure [Makhoul et al., 1999] as metrics for
evaluating the correctness of the recognized entities found by each API as well as
combined APIs:

Recall =
Correctly Recognized Entities

Actual Entities in the Text
(5.1)

88

5.4. Combining NLP-API results

Figure 5.6.: Avg. Precision, Recall and F-score for each API & their combination.

Precision =
Correctly Recognized Entities

Entities Recognized by the API
(5.2)

F = 2× Precision×Recall

Precision + Recall
(5.3)

To compare the results of the different APIs, 31 articles7 were collected in the
three categories news articles, Weblog posts and Wikipedia articles. For each
article, the following analysis was performed:

We carefully analyzed the text and manually annotated it by recognizing ref-
erences to location, person and organization entities. As a result we obtained
a list of actual entities together with their types. Then we used the RDFaCE
enrichment feature to automatically annotate the text by employing the external
NLP APIs. By analyzing the RDFaCE generated heatmaps (cf. Figure 5.5) and
the disambiguation of recognized entities, we extracted the number of recognized
entities, correctly recognized, wrongly recognized and missing entities. Based on
these values, Recall (5.1), Precision (5.2) and F-Score (5.3) were calculated for
each API as well as for various combinations of APIs. Results of calculating these
metrics for each API as well as for the situation when 2, 3 or 4 of the APIs agree
on a recognized entity are shown in Table 5.1.

7Available together with the gold standard at http://rdface.aksw.org/samples/

89

http://rdface.aksw.org/samples/

5.
F

rom
W

Y
S
IW

Y
G

to
W

Y
S
IW

Y
M

Table 5.1.: Recall, Precision and F-score for each API and combined APIs.
Alchemy Extractive OpenCalais Ontos Evri 2 Agree 3 Agree 4 Agree

Article R P F R P F R P F R P F R P F R P F R P F R P F
News#1 100 80 89 75 86 80 75 100 86 88 100 93 88 100 93 88 100 93 88 100 93 75 100 86
News#2 88 70 78 88 58 70 100 89 94 88 88 88 100 73 84 100 89 94 88 100 93 50 100 67
News#3 82 90 86 91 83 87 100 92 96 73 100 84 100 69 81 100 92 96 82 100 90 73 100 84
News#4 78 95 86 57 72 63 83 100 90 65 100 79 74 85 79 78 95 86 74 100 85 57 100 72
News#5 67 71 69 22 57 32 67 75 71 61 100 76 94 89 92 83 88 86 56 91 69 33 100 50
News#6 76 87 81 53 64 58 76 93 84 47 89 62 76 93 84 88 88 88 71 100 83 35 100 52
News#7 50 80 62 63 77 69 44 100 61 50 89 64 56 82 67 63 100 77 38 100 55 25 100 40
News#8 79 92 85 71 91 80 86 100 92 86 100 92 93 100 96 100 100 100 79 100 88 64 100 78
News#9 80 80 80 60 75 67 60 67 63 50 100 67 80 89 84 80 89 84 60 86 71 30 75 43
News#10 73 100 84 18 67 29 73 73 73 100 92 96 73 89 80 91 100 95 64 100 78 45 100 63
News#11 46 86 60 38 83 53 54 70 61 31 100 47 46 67 55 62 80 70 38 100 56 15 100 27

Avg. 74 84 78 58 74 62 74 87 79 67 96 77 80 85 81 85 93 88 67 98 78 46 98 60
Blog#1 55 75 63 36 67 47 82 100 90 55 100 71 64 88 74 82 100 90 45 100 63 18 100 31
Blog#2 53 75 62 65 85 73 35 100 52 12 67 20 59 91 71 71 92 80 35 86 50 6 100 11
Blog#3 40 50 44 60 55 57 40 80 53 40 80 53 50 83 63 60 67 63 20 100 33 20 100 33
Blog#4 14 20 17 14 14 14 29 50 36 57 80 67 29 33 31 29 40 33 14 0 0 0 0 0
Blog#5 43 100 60 57 100 73 57 100 73 43 75 55 43 75 55 57 100 73 29 100 44 14 100 25
Blog#6 75 92 83 38 67 48 69 100 81 75 92 83 81 100 90 100 100 100 81 100 90 63 100 77
Blog#7 67 75 71 67 55 60 33 100 50 33 60 43 89 80 84 67 100 80 56 100 71 33 100 50
Blog#8 86 100 92 57 89 70 79 100 88 50 78 61 57 89 70 86 92 89 71 100 83 57 100 73
Blog#9 45 100 63 45 71 56 64 64 64 73 89 80 64 100 78 73 80 76 45 100 63 27 100 43
Blog#10 70 78 74 40 57 47 80 100 89 50 100 67 90 100 95 100 100 100 80 100 89 40 100 57

Avg. 55 77 63 48 66 54 57 89 68 49 82 60 62 84 71 72 87 78 48 89 59 28 90 40
Wiki#1 53 100 69 42 53 47 74 100 85 47 75 58 74 82 78 63 92 75 63 100 77 32 100 48
Wiki#2 50 57 53 31 100 48 50 89 64 44 70 54 56 100 72 56 82 67 25 100 40 19 100 32
Wiki#3 57 92 71 19 67 30 43 82 56 33 78 47 71 100 83 57 92 71 33 100 50 19 100 32
Wiki#4 78 100 88 78 95 86 78 95 86 83 100 90 91 100 95 91 100 95 78 100 88 74 100 85
Wiki#5 100 100 100 25 50 33 100 80 89 75 100 86 75 75 75 100 80 89 75 100 86 50 100 67
Wiki#6 74 78 76 58 61 59 89 81 85 32 86 46 89 85 87 84 94 89 74 100 85 37 100 54
Wiki#7 80 92 86 33 83 48 73 92 81 87 100 93 80 86 83 87 100 93 80 100 89 67 100 80
Wiki#8 63 77 69 69 85 76 63 83 71 38 86 52 69 85 76 63 77 69 56 100 72 38 100 55
Wiki#9 56 90 69 50 67 57 69 92 79 38 67 48 75 100 86 75 100 86 56 100 72 38 100 55
Wiki#10 61 100 76 39 78 52 67 92 77 50 75 60 78 58 67 83 100 91 44 100 62 33 100 50

Avg. 67 89 76 44 74 54 71 89 77 53 84 63 76 87 80 76 92 82 59 100 72 41 100 56

All Avg. 66 83 72 51 71 57 67 88 75 57 88 67 73 86 78 78 90 83 58 95 70 38 96 52

90

5.5. Use Cases and Variations of RDFaCE

The results (cf. Figure 5.6) show that Alchemy, OpenCalais, Ontos and Evri
deliver comparable results, while Extractive is a little behind. The ranking with
regard to F-Score for all individual categories as well as for the average over all
categories is: 1. Evri. 2. OpenCalais, 3. Alchemy, 4. Ontos, 5. Extractive. That
the ranking is the same for all categories as well as the overall average indicates
that all services perform homogeneously across the different categories. Another
interesting observation is that all services deliver the best F-Score for news articles
followed by Wiki articles and blog posts. A plausible reason for this is the degree
of formality and quality checks, which are more likely with news articles than with
blog posts.

As we consider more agreement on an entity to be recognized (i.e. two, three
or four APIs have to agree), we obtain a higher precision but lower recall. The
interesting result of our analysis is that we have the highest F-score when two or
more APIs agree on an entity. In this case, we also get the highest recall and the
result is independent from the type of text (i.e. News, Weblog or Wiki article).
Further increasing the requirement of agreement, however, dramatically decreases
recall.

5.5. Use Cases and Variations of RDFaCE

The RDFaCE approach is very versatile and can be applied in a vast number of
use cases. Also, our implementation based on the widely used TinyMCE editor
makes RDFaCE directly applicable in many usage scenarios. In this section we
introduce three use cases of RDFaCE, which exemplify the versatility of the
approach.

5.5.1. Semantic Blogging in WordPress

WordPress8 is an open source Weblog tool and publishing platform. WordPress
is often customized into a Content Management System (CMS) and is used by over
14% of the 1,000,000 biggest websites (54.4% of CMS market share) [W3Techs,
2011]. WordPress uses TinyMCE as its content editor. That makes it extremely
easy to add the RDFaCE plugin9 for semantic content authoring within this CMS.
With the integration of RDFaCE into the WordPress, the availability of semantically
annotated content on the Web can be substantially increased. Figure 5.7 shows
an screenshot of RDFaCE integrated into WordPress for semantic blogging. Since
releasing the RDFaCE WordPress plugin, the tool has been downloaded over 2000
times.10

8http://wordpress.org
9Available at: http://wordpress.org/plugins/rdface/

10http://wordpress.org/plugins/rdface/stats/

91

http://wordpress.org
http://wordpress.org/plugins/rdface/
http://wordpress.org/plugins/rdface/stats/

5. From WYSIWYG to WYSIWYM

Figure 5.7.: Screenshot of RDFaCE integrated into WordPress.

5.5.2. Data Journalism using rNews

rNews11 is a proposed standard for using RDFa to annotate HTML documents
with news-specific metadata. rNews is proposed by International Press Telecommu-
nications Council (IPTC), which is a consortium of the world’s major news agencies,
publishers and industry vendors. rNews defines a small set of core concepts for
annotating news articles and a few properties for each concept. Concepts include
NewsItem, Tag, Person, Article, Media, Headline, Location, Organization,
Party, TickerSymbol and Comment. These annotations are derived from the best
practices found in the news industry. We developed a specific version of RDFaCE
called RDFaCE-Lite which is well suited for the rNews vocabulary. It provides
an autosuggestion feature for the classes and properties defined in the rNews
vocabulary. RDFaCE-Lite also provides a context menu for the rNews vocabulary
so that users can easily annotate their news articles using the rNews vocabulary.
Furthermore, RDFaCE-Lite maps the output of different annotation APIs to the
rNews vocabulary thereby providing a base set of automatically annotated con-
tent for journalists and content managers. Supporting rNews will enable Data
Journalism12 – ability to tell a compelling story, with the sheer scale and range of
digital information. Figure 5.8 and Figure 5.9 present the architecture as well as
an screenshot of RDFaCE-Lite.

11http://dev.iptc.org/rNews
12http://datajournalismhandbook.org/

92

http://dev.iptc.org/rNews
http://datajournalismhandbook.org/

5.5. Use Cases and Variations of RDFaCE

Figure 5.8.: Architecture of RDFaCE-Lite.

5.5.3. Search Engine Optimization (SEO) using Schema.org

Schema.org as discussed in Section 2.3.2 provides a collection of schemas, i.e.,
HTML tags, that Webmasters can use to markup their pages in ways recognized
by major search providers. This would help search engines to improve the display
of search results, making it easier for people to find the right Web pages. From
the users side, having schema markup on users Websites makes it easier for search
engines to interpret their content and, therefore, be more likely to be included in
the search results for a related query. This will lead to more traffic which attracts
many web users to adopt this new technology. Although, there are already a few
tools like Schema Creator 13, Microdata Generator 14 and Structured Data Markup
Helper 15 which have tried to enable semantic markup based on Schema.org, none
of the existing tools provide a user-friendly, flexible and comprehensive solution for
semantic markup. The available tools have the following drawbacks, which make
them out of reach for normal web users:

• They do not provide any mechanism for automatic content markup.
• They do not support the whole Schema.org vocabulary and are limited to a

limited set of schemas. This doesn’t allow them to be adapted to new use
cases.

• They are not integrated into the user’s authoring progress and need additional
efforts (e.g. installing and learning new tools) for users to be employed.

• They usually need users to have some knowledge of the markup and Schema.org

13http://schema-creator.org/
14http://www.microdatagenerator.com/
15https://www.google.com/webmasters/markup-helper/

93

Schema.org
http://schema-creator.org/
 http://www.microdatagenerator.com/
https://www.google.com/webmasters/markup-helper/

5. From WYSIWYG to WYSIWYM

Figure 5.9.: Screenshot of RDFaCE-Lite with support for rNews.

vocabulary thereby cannot be used by non-programmer end users.
RDFaCE comes with a special edition customized for Schema.org vocabulary.

In this version, different color schemes are assigned to different schemas defined
in Schema.org. Users are able to create a subset of Schema.org schemas for their
intended domain and customize the colors for this subset. In this version, nested
forms are dynamically generated from the selected schemas for authoring and
editing of the annotations.

Figure 5.10 presents the configuration steps in RDFaCE Schema.org edition.
The first step is to model the user’s domain of interest by selecting a subset
of Schema.org schemas. For example user might select NewsArticle, Person,
Organization and Place schemas as his desirable schemas. For each schema, the
range of properties will be checked in order to include derivative schemas as well
(e.g. PostalAddress and Country for the Place schema). The results of this step

94

Schema.org

5.5. Use Cases and Variations of RDFaCE

Figure 5.10.: Configuration steps in RDFaCE Schema.org edition.

is an input JSON file which describes the selected schemas together with their
corresponding properties. For visualization of schemas, we need to assign unique
colors to the selected schemas. We use an algorithm to automatically generate a
light color scheme for the schemas. The color scheme is available as CSS styles
and is easily configurable by users.

The next step is to generate appropriate forms based on the selected schemas.
Form inputs are created based on the corresponding data type defined as range
of the schema properties. For example we add Datepicker UI for properties with
Date as their range. These forms are then used to add metadata into the text.

The final step in configuration is to select the desired markup format (e.g. RDFa
or Microdata) as well as desired NLP APIs (e.g. DBpedia Spotlight16) for automatic
annotation of content. Users can select multiple NLP APIs and determine how
they want to combine the results. The combination can be performed based on
the agreement between two or more of the involved APIs. Users are also able to
set a confident level for automatic annotation and can limit the type of recognized
entities to only annotate specific entities like Persons and Places.

Example Scenario. On-page markup based on Schema.org enables search engines
to increasingly understand the information on Web pages and provide richer search

16http://spotlight.dbpedia.org/

95

http://spotlight.dbpedia.org/

5. From WYSIWYG to WYSIWYM

Figure 5.11.: Search results improved by rich snippets. A: enhanced recipe, B:
normal recipe, C: browsing recipes by ingredients, cook time and
calories.

results. Rich Text Snippets as an example of on-page markup provides an immediate
advantage and motivation for Web users to embed structured content into their
documents. Rich snippets comprise a wide range of schemas such as Breadcrumbs,
Events, Music, Organizations, People, Products, Recipes, Review ratings, Reviews,
Software Applications and Videos. Web documents which are annotated based
on these schemas will attract more attention by people searching the Web due to
the richness of presented information. Figure 5.11 shows as example of enhanced
search results for recipes powered by rich snippets.

As an example scenario, Figure 5.13 presents the RDFaCE WYSIWYM interface
employed to annotate a sample recipe rich snippet. The user simply selects the parts
of the text and annotates them using the corresponding schema from Schema.org.
On the background, RDFaCE generates the corresponding RDFa or Microdata
markup based on the following rules:

• if the selected text already has an HTML tag, metadata will be added as
new attributes for the current tag (e.g. Figure 5.12 line 2 or 6).

• if the selected text does not have an HTML tag, a new or <DIV> tag
with corresponding attributes will be created (e.g. Figure 5.12 line 1 or 3).

• if no text is selected, a new <META> tag with corresponding attributes will
be created (e.g. Figure 5.12 line 17 or 18).

5.6. Usability Evaluation

Since releasing RDFaCE, the tool (WordPress plugin and independent TinyMCE
plugins) has been downloaded over 3000 times and the online demo page has
received more than 5000 unique visits. we also could collect considerable feedback

96

5.6. Usability Evaluation

1 <div itemscope itemtype="http://schema.org/Recipe">

2 <h2 itemprop="name">Strawberry Cake</h2>

3 <p>By Ali Khalili, July 8, 2013

</p>

4 <h4>Ingredients</h4>

5

6 <li itemprop="ingredients">2 cups white sugar

7 ...

8

9 <p>Preparation time: 10 mins</p>

10 <p>Cooking time: 30 min</p>

11 <p>Ready in 40 min</p>

12 <p>

13 <span itemscope

itemtype="http://schema.org/NutritionInformation"

itemprop="nutrition">

14 Calories: 393 kcal

15

16 </p>

17 <meta itemprop="dateCreated" content="2013-07-08">

18 <meta itemprop="prepTime" content="PT15M">

19 </div>

Figure 5.12.: Example of Microdata annotations generated by RDFaCE.

from RDFaCE end-users on the Social Web. For a concrete evaluation of RDFaCE
usability, we conducted an experiment with 16 participants of ISSLOD 2011
summer school17. For the experiment, we developed a usability test platform18.
The experiment consisted of the following steps:
First, some basic information about semantic content authoring along with a
demo showcasing different RDFaCE features was presented to the participants
as a video. Then, participants were asked to use RDFaCE to annotate three
text snippets – a wiki article, a blog post and a news article (News#2, Blog#4,
Wiki#3 from our sample articles). For each text snippet, a timeslot of five minutes
was available to use different features of RDFaCE for annotating occurrences of
persons, locations and organizations with suitable entity references (i.e. Linked
Data URIs). Subsequently, a survey was presented to the participants were they
were asked some questions about their experience while working with RDFaCE.
Questions were targeting six factors of usability [Lauesen, 2005] namely Fit for
use, Ease of learning, Task efficiency, Ease of remembering, Subjective satisfaction

17Summer school on Linked Data: http://lod2.eu/Article/ISSLOD2011
18Available online at: http://rdface.aksw.org/usability

97

http://lod2.eu/Article/ISSLOD2011
http://rdface.aksw.org/usability

5. From WYSIWYG to WYSIWYM

Figure 5.13.: Using RDFaCE to annotate recipes based on Schema.org.

Skill/ Level heard of it basic advanced expert
Skill in Semantic Web 6.25% 37.50% 37.50% 18.75%
Skill in RDFa 18.75% 37.50% 37.50% 6.25%

Table 5.2.: Participants level of knowledge.

and Understandability. Results of individual user annotations as well as the results
of the survey were carefully analyzed for extracting subjective and objective usage
characteristic of RDFaCE, respectively. In the following we report about the result
of this experiment:

Participants. Participants included students (85%) and researchers (15%) work-
ing on different aspects of computer science and informations systems. As shown in
Table 5.2, they bear different level of knowledge in Semantic Web and in particular
RDFa, varying from basic to expert knowledge.

Usability Factors. During the experiment we collected considerable qualitative
feedback from the end-users. As shown in Table 5.3, the overall feedback of users
was positive and they provided constructive feedback to enhance the usability of
RDFaCE. They frequently told us that they are impressed with the functionality
of RDFaCE to support their desired tasks. They found the UI easy to learn but in
some cases had difficulties to distinguish between property and subject suggestions.
Some users suggested to change triple insertion to property insertion and some
suggested to improve the visualization of URI suggestion results so that they can
easily choose the appropriate one. Most of the users found the UI easy to remember

98

Schema.org

5.7. Comparison of RDFaCE to Existing SCA Tools

Usability Factor/Grade Poor Fair Neutral Good Excellent

Fit for use 0% 12.50% 31.25% 43.75% 12.50%
Ease of learning 0% 12.50% 50% 31.25% 6.25%
Task efficiency 0% 0% 56.25% 37.50% 6.25%
Ease of remembering 0% 0% 37.50% 50% 12.50%
Subjective satisfaction 0% 18.75% 50% 25% 6.25%
Understandability 6.25% 18.75% 31.25% 37.50% 6.25%

Table 5.3.: Usability factors derived from the survey.

and a few suggested to change some RDFaCE toolbar icons to more descriptive
ones.

Annotations. Figure 5.14 reflects the number of annotations (triples) as well as
the time of annotation per user for each of the text fragments. From the results we
can see that almost (except two cases) all users have been able to create semantic
text content. The annotation time for the last text snippet has decreased for
most of the users which is an indicator for increased familiarity of the users with
RDFaCE.

5.7. Comparison of RDFaCE to Existing SCA Tools

There are already many Semantic Content Authoring (SCA) systems available.
RADiFy19, WYMeditor 20, DataPress [Benson et al., 2010], Loomp [Luczak-Roesch,
2009] and FLERSA [Navarro-Galindo and Samos, 2010] are some examples of
SCA systems which adopt the bottom-up approach. We can also mention RD-
Fauthor [Tramp et al., 2010] and SAHA 3 [Frosterus et al., 2011] as two examples
which adopt the top-down approach for semantic authoring. OntosFeeder 21 and
Epiphany22 are also two partially related tools. They do not provide editing
functionality for RDFa generated content but can be used as complementary tools
to RDFaCE which deliver a set of initial RDFa annotations to be edited and
extended later on by RDFaCE. As an another related work we can mention Named
Entity Recognition and Disambiguation (NERD) [Rizzo and Troncy, 2011]23 which
is an evaluation framework which records and analyzes ratings of Named Entity
extraction and disambiguation tools. The main difference between RDFaCE and
NERD is that RDFaCE employs the voting approach to combine the results of NLP
APIs for automatic annotation but NERD expects a human being to manually
compare the results of different NLP APIs and choose the right one for annotation.

Figure 5.15 provides a comparison between the three popular SCA systems

19http://duncangrant.co.uk/radify/
20http://www.wymeditor.org
21http://wordpress.org/extend/plugins/ontos-feeder/
22http://projects.dfki.uni-kl.de/epiphany/
23http://nerd.eurecom.fr/

99

http://duncangrant.co.uk/radify/
http://www.wymeditor.org
http://wordpress.org/extend/plugins/ontos-feeder/
http://projects.dfki.uni-kl.de/epiphany/
http://nerd.eurecom.fr/

5. From WYSIWYG to WYSIWYM

Figure 5.14.: Results of usability test. (top) Number of annotations per user.
(bottom) Annotation time per user.

(RDFauthor, SAHA 3 and Loomp) and RDFaCE based on the quality attributes
discussed in Chapter 3. Here we have compared the tools based on the quality
attributes that were already addressed during the development of RDFaCE. RD-
Fauthor is a tool for editing RDFa contents. The RDFauthor approach is based on
the idea of making arbitrary XHTML views with integrated RDFa annotations ed-
itable [Tramp et al., 2010]. RDFauthor converts an RDFa-annotated view directly
into an editable form thereby hiding the RDF and related ontology data models
from novice users. It is backend independent to some extend and supports two
different types of storage engines. Although RDFauthor has as RDFaCE the goal
to make RDFa editing simple by abstracting the details of RDFa authoring both
differ in two crucial aspects: Firstly, RDFauthor assumes that the RDFa content
is already existing while RDFaCE provides the feature to creating new RDFa
annotations. Secondly, instead of using forms to edit RDFa contents, RDFaCE
employs inline editing of contents by providing a rich semantic text editor. Saha

100

5.8. Conclusions

RDFauthor SAHA 3 Loomp RDFaCE

Usability -Single point of entry UI
-Inline editing

-Single point of entry UI
-Inline editing

-Single point of entry UI
-Faceted viewing

-Single point of entry UI
-Inline editing

Customizability - - -

-Semantic views:
 WYSIWYM, WYSIWYG
, triple view,
 source code view

Proactivity -Resource suggestion
-Concept reuse

-Resource suggestion
-Concept reuse
-Real-time validation

-Resource suggestion
-Concept reuse -Resource suggestion

Automation - - - -Automatic annotation:
 NLP APIs

Scalability
-Storage strategy:
 backend independent
(Mysql, Virtuoso)

-Storage strategy:
 server-side triple store

-Storage strategy:
 server-side triple store

-Storage strategy:
on-the-fly client-side
 triple storage

Figure 5.15.: Comparison of RDFauthor, SAHA 3, Loomp and RDFaCE according
to the quality attributes.

3 is another meta data editor which is very similar to RDFauthor but supports
real-time validation in addition (see Section 3.8.2).

Loomp is an editor which allows annotating words and phrases with references
to ontology concepts (see Section 3.8.3). It supports a faceted viewing feature,
which highlights user-selected annotations in the Web browser. The main difference
between Loomp and RDFaCE is that Loomp relies on the functionality of a server
managing the semantic content while RDFaCE provides client-side annotation for
modifying RDFa content directly. Morever, Loomp uses a triple store on the server
side but in RDFaCE, triples are created on the fly in the user browser.

The main advantages of RDFaCE comparing to other tools are twofold: Providing
different views for authoring semantic documents as well as supporting automatic
content annotation, which improve the customizability and automation remarkably.
Furthermore, since RDFaCE processes the annotations client-side within the user’s
browser and does not require any central storage backend, it is highly scalable.

5.8. Conclusions

This chapter addressed the research question RQ3 (cf. Section 1.3) to integrate
semantic authoring features into the current tools on the Social Web. With
RDFaCE we presented an approach and its implementation of a WYSIWYM editor
based on complementing the classical WYSIWYG view with three additional views
on the semantic representations. We showed that with RDFaCE the semantic
annotation and enrichment can be easily integrated into the content authoring
pipelines commonly found in many content centric scenarios.

101

Chapter 6

WYSIWYM for Lightweight Text
Analytics

“Simplicity is the ultimate sophistication.”
— Leonardo da Vinci

In this chapter we present a text analytics architecture of participation, which em-
ploys WYSIWYM UI model to allow ordinary people with no or limited knowledge
of programming to use sophisticated NLP techniques for analyzing and visualizing
their content, be it a Blog, Twitter feed, Website or article collection. Different
exchangeable components can be plugged into this architecture, making it easy to
tailor for individual needs. We evaluate the usefulness of our approach by compar-
ing both the effectiveness and efficiency of end users within a task-solving setting.
Moreover, we evaluate the usability of our approach using a questionnaire-driven
approach.

The chapter is structured as follows: Section 6.1 describes the current analytical
information imbalance. In Section 6.2, we introduce conTEXT for democratizing
the NLP usage. We show that conTEXT fills a gap in the space of related
approaches in Section 6.3. The general workflow and interface design is presented
in Section 6.4. The different visualizations and views supported by conTEXT are
discussed in Section 6.5 before we present our implementation in Section 6.6. We
show the results of a qualitative and quantitative user evaluation in Section 6.7
before we conclude in Section 6.8.1

6.1. Analytical Information Imbalance

Currently, there seems to be an imbalance on the Web. Hundreds of millions of
users continuously share stories about their life on social networking platforms such
as Facebook, Twitter and Google Plus. However, the conclusions that can be drawn
from analyzing the shared content are rarely shared back with the users of these
platforms. The social networking platforms on the other hand exploit the results
of analyzing user-generated content for targeted placement of advertisements,
promotions, customer studies etc. One basic principle of data privacy is, that every
person should be able to know what personal information is stored about herself
in a database (cf. OECD privacy principles2). We argue, that this principle does
not suffice anymore and that there is an analytical information imbalance. People

1The contents of this chapter have been published as [Khalili et al., 2014].
2http://oecdprivacy.org/#participation

102

http://oecdprivacy.org/#participation

6.2. conTEXT: A Text Analytics Architecture of Participation

should be able to find out what patterns can be discovered and what conclusions
can be drawn from the information they share.

Let us look at the case of a typical social network user Judy. When Judy updates
her social networking page regularly over years, she should be able to discover
what the main topics were she shared with her friends, what places, products or
organizations are related to her posts and how these things she wrote about are
interrelated. Currently, the social network Judy uses analyzes her and other users
data in a big data warehouse. Advertisement customers of the social networking
platform, can place targeted adds to users being interested in certain topics. Judy,
for example, is sneaker aficionado. She likes to wear colorful sports shoes with
interesting designs, follows the latest trends and regularly shares her current
favorites with her friends on the social network. Increasingly, advertisements for
sportswear are placed within her posts. Being able to understand what conclusions
can be drawn by analyzing her posts will give Judy at least some of the power
back into her hands she lost during the last years to Web giants analyzing big user
data.

6.2. conTEXT: A Text Analytics Architecture of
Participation

In order to mitigate the current analytical information imbalance, we created
conTEXT 3 – a text analytics architecture of participation, which allows end-users
to use sophisticated NLP techniques for analyzing and visualizing their content, be
it a Weblog, Twitter, Facebook, G+, LinkedIn feed, Website or article collection.
With almost no effort, users can analyze the information they share and obtain
similar insights as social networking sites. The conTEXT architecture comprises
interfaces for information access, natural language processing (currently mainly
NER) and visualization. Different exchangeable components can be plugged
into this architecture. Users are empowered to provide manual corrections and
feedback on the automatic text processing results, which directly increase the
semantic annotation quality and are used as input for attaining further automatic
improvements. An online demo of the conTEXT is available at http://context.
aksw.org.

conTEXT empowers users to answer a number of questions, which were previously
impossible or very tedious to answer. Examples include:

• Finding all articles or posts related to a specific person, location or organiza-
tion.

• Identifying the most frequently mentioned terms, concepts, people, locations
or organizations in a corpus.

3We choose the name conTEXT, since our approach performs analyzes with (Latin ‘con’)
text and provides contextual visualizations for discovered entities in text.

103

http://context.aksw.org
http://context.aksw.org

6. WYSIWYM for Lightweight Text Analytics

NLP APIs

Targeted user

F
le

x
ib

il
it

y
 o

f
u

s
e
r

in
te

rf
a
c
e

lo
w

h
ig

h

Non-programmerExpert-programmer Novice programmer

Spreadsheets

Text Analysis

Development Environments

Text Analysis

Tools

conTEXT

Business Intelligence

Tools

Linked Data

Analysis Tools

Social Media

Analysis Tools

Figure 6.1.: Flexibility of user interfaces and targeted user groups as well as gener-
icity (circle size) and degree of structure (circle color) for various
analytics platforms.

• Showing the temporal relations between people or events mentioned in the
corpus.

• Discovering typical relationships between entities.
• Identifying trending concepts or entities over time.
• Find posts where certain entities or concepts co-occur.

conTEXT lowers the barrier to text analytics by providing the following key
features:

• No installation and configuration required.
• Access content from a variety of sources.
• Instantly show the results of analysis to users in a variety of visualizations.
• Allow refinement of automatic annotations and take feedback into account.
• Provide a generic architecture where different modules for content acquisition,

natural language processing and visualization can be plugged together.

6.3. Classification of Existing Text Analysis Tools

Analytics (i.e. the discovery and communication of meaningful patterns in
data) is a broad area of research and technology. Involving research ranging from
NLP and Machine Learning to Semantic Web, this area has been very vibrant in

104

6.3. Classification of Existing Text Analysis Tools

recent years. Existing tools in the domain of analytics can be roughly categorized
according to the following dimensions:

• Degree of structure. Typically, an analytics system extracts patterns from
a certain type of input data. The type of input data can vary between
unstructured (e.g. text, audio, videos), semi-structured (e.g. text formats,
shallow XML, CSV) and structured data (e.g. databases, RDF, richly
structured XML).

• Flexibility of user interface. Analytics systems provide different types of
interfaces to communicate the found patterns to users. A flexible UI should
support techniques for exploration, visualization as well as even feedback and
refinemment of the discovered patterns. This dimension also evaluates the
interactivity of UIs, diversity of analytical views as well as the capability to
mix results.

• Targeted user. An analytics system might be used by different types of users
including non-programmer, novice-programmer and expert-programmer.

• Genericity. This dimension assesses an analytics system in terms of genericity
of architecture and scalability. These features enable reuse of components as
well as adding new functionality and data at minimal effort.

Figure 6.1 provides an abstract view of the state-of-the-art in analytics according
to these dimensions.

Text analysis development environments usually provide comprehensive support
for developing customized text analytics workflows for extracting, transforming
and visualizing data. Typically they provide a high degree of genericity and
interface flexibility, but require users to be expert-programmers. Examples include
the IBM Content Analytics platform4, GATE [Cunningham et al., 2011], Apache
UIMA [Ferrucci and Lally, 2004].

Text analysis tools provide a higher level of abstraction (thus catering more
novice users) at the cost of genericity. Yang et al. [Yang et al., 2013] recently
published an extensive text analytics survey from the viewpoint of the targeted
user and introduced a tool called WizIE which enables novice programmers to
perform different tasks of text analysis. Examples include Attensity5, Thomson
Data Analyzer 6 Trendminer [Preotiuc-Pietro et al., 2012] and MashMaker [Ennals
et al., 2007].

Business intelligence (BI) tools are applications designed to retrieve, analyze
and report mainly highly-structured data for facilitating business decision making.
BI tools usually require some form of programming or at least proficiency in

4http://www-03.ibm.com/software/products/us/en/contentanalyticssearch
5http://www.attensity.com
6http://thomsonreuters.com/thomson-data-analyzer/

105

http://www-03.ibm.com/software/products/us/en/contentanalyticssearch
http://www.attensity.com
http://thomsonreuters.com/thomson-data-analyzer/

6. WYSIWYM for Lightweight Text Analytics

query construction and report designing. Examples include Zoho Reports7, SAP
NetWeaver 8, Jackbe9, and RapidMiner [Jungermann, 2009].

Spreadsheet-based tools are interactive applications for organization and analysis
of data in tabular form. They can be used without much programming skills,
are relatively generically applicable and provide flexible visualizations. However,
spreadsheet-based tools are limited to structured tabular, data and can not be
applied to semi-structured or text data. Examples include Excel, DataWran-
gler [Kandel et al., 2011], Google Docs Spreadsheets and Google Refine.

NLP APIs are web services providing natural language processing (e.g. named
entity recognition and relation extraction) for analyzing web pages and documents.
The use of these APIs requires some form of programming and flexible interfaces are
usually not provided. Examples include Alchemy, OpenCalais, Apache OpenNLP.10

Linked Data analysis tools support the exploration and visualization of Linked
Data (LD). Examples include Facete11 for spatial and CubeViz 12 for statistical
data. Dadzie and Rowe [Dadzie and Rowe, 2011] present a comprehensive survey
of approaches for visualizing and exploring LD. They conclude that most of the
tools are designed only for tech-users and do not provide overviews on the data.

Social Media analysis tools such as SRSR, TweetDeck 13, Topsy14, Flumes15, and
Trendsmap16 focus in comparison to conTEXT primarily on the content aggregation
across large repositories (e.g. Twitter as a whole) and perform popularity and
trend analysis. conTEXT on the other hand aims at providing different exploration
and visualization means for more specific types of content exploiting the extracted
semantics.

When comparing these different analytics tool categories according to the dimen-
sions genericity, UI flexibility, target users and degree of structure we discovered
a lack of tools dealing with unstructured content, catering non-expert users and
providing flexible analytics interfaces. The aim of developing the text analytics
tool conTEXT is to fill this gap.

6.4. Workflow and Interface Design

Workflow. Figure 6.2 shows the process of text analytics in conTEXT. The
process starts by collecting information from the web or social web. conTEXT
utilizes standard information access methods and protocols such as RSS/ATOM

7http://www.zoho.com/reports/
8http://sap.com/netweaver
9http://jackbe.com/

10A complete list of NLP APIs is available at http://nerd.eurecom.fr/
11http://aksw.org/Projects/Facete
12http://aksw.org/Projects/CubeViz
13http://tweetdeck.com/
14http://topsy.com/
15http://www.flumes.com/
16http://trendsmap.com/

106

http://www.zoho.com/reports/
http://sap.com/netweaver
http://jackbe.com/
http://nerd.eurecom.fr/
http://aksw.org/Projects/Facete
http://aksw.org/Projects/CubeViz
http://tweetdeck.com/
http://topsy.com/
http://www.flumes.com/
http://trendsmap.com/

6.4. Workflow and Interface Design

Collecting

RSS, Atom, RDF Feeds REST APIs SPARQL Endpoints Web Crawlers

Processing

Enriching Mixing

Annotation Refinement Exploring & Visualizing

feedback

RDFaCE

Exhibit

D3.js

BOA

Figure 6.2.: Text analytics workflow in conTEXT.

feeds, SPARQL endpoints and REST APIs as well as customized crawlers for
SlideWiki, WordPress, Blogger and Twitter to build a corpus of information
relevant for a certain user.

The assembled text corpus is then processed by NLP services. While conTEXT
can integrate virtually any NLP services, it currently implements interfaces for
DBpedia Spotlight [Mendes et al., 2011] and the Federated knOwledge eXtraction
Framework (FOX) [Ngomo et al., 2011] for discovering and annotating named
entities in the text. DBpedia Spotlight annotates mentions of DBpedia resources
in text thereby links unstructured information sources to the Linked Open Data
cloud through DBpedia. FOX is a knowledge extraction framework that utilizes a
variety of different NLP algorithms to extract RDF triples of high accuracy from
text. Unlike DBpedia Spotlight, which supports all the DBpedia resource types,
FOX is limited to Person, Location and Organization types. On the other hand,
since FOX uses ensemble learning to merge different NLP algorithms, leads to a
higher precision and recall (see [Ngomo et al., 2011] for details).

The processed corpus is then further enriched by two mechanisms:

• DBpedia URIs of the found entities are de-referenced in order to add more
specific information to the discovered named entities (e.g. longitude and
latitudes for locations, birth and death dates for people etc.).

• Entity co-occurrences are matched with pre-defined natural-language patterns
for DBpedia predicates provided by BOotstrapping linked datA (BOA) [Ger-
ber and Ngonga Ngomo, 2011] in order to extract possible relationships
between the entities.

The processed data can also be joined with other existing corpora in a text ana-
lytics Mashup. Such a Mashup of different annotated corpora combines information

107

6. WYSIWYM for Lightweight Text Analytics

from more than one corpus in order to provide users an integrated view. Analytics
Mashups help to provide more contexts for the text corpus under analysis and also
enable users to mix diverse text corpora for performing a comparative analysis.
For example, a user’s WordPress blog corpus can be integrated with corpora
obtained from her Twitter and Facebook accounts. The creation of analytics
Mashups requires dealing with the heterogeneity of different corpora as well as the
heterogeneity of different NLP services utilized for annotation. conTEXT employs
NIF [Hellmann et al., 2013] to deal with this heterogeneity. The use of NIF allows
us to quickly integrate additional NLP services into conTEXT.

The processed, enriched and possibly mixed results are presented to users using
different views for exploration and visualization of the data. Exhibit [Huynh et al.,
2007]17 (structured data publishing) and D3.js [Bostock et al., 2011]18 are employed
for realizing a dynamic exploration and visualization experience. Additionally,
conTEXT provides an annotation refinement user interface based on the RDFa
Content Editor (RDFaCE) discussed in Chapter 5 to enable users to revise the
annotated results. User-refined annotations are sent back to the NLP services as
feedback for the purpose of learning in the system.

Progressive crawling and annotation. The process of collecting and annotating
a large text corpus can be time-consuming. Therefore it is very important to provide
users with immediate results and inform them about the progress of the crawling
and annotation task. For this purpose, we have designed special user interface
elements to keep users informed until the complete results are available. The first
indicator interface is an animated progress bar, which shows the percentage of
the collected/annotated results as well as the currently downloaded and processed
item (e.g. the title of the blog post). The second indicator interface is a real-time
tag cloud, which is updated while the annotation is in progress. We logged all
crawling and processing timings during our evaluation period. Based on these
records, the processing of a Twitter feed with 300 tweets takes on average 30
seconds and the processing of 100 blog posts approx. 3-4 minutes on standard
server with i7 Intel CPU (with parallelization and hardware optimizations further
significant acceleration is possible). This shows, that for typical crawling and
annotation tasks the conTEXT processing can be performed in almost real-time
thus providing instant results to the users.

Annotation refinement interfaces. A lightweight text analytics as implemented
by conTEXT provides direct incentives to users to adopt and revise semantic text
annotations. Users will obtain more precise results as they refine annotations. On
the other hand, NLP services can benefit from these manually-revised annotations
to learn the right annotations. conTEXT employs the RDFaCE within the faceted
browsing view and thus enables users to edit existing annotations while browsing

17http://simile-widgets.org/exhibit3/
18Data-Driven Document (D3) http://d3js.org/

108

http://simile-widgets.org/exhibit3/
http://d3js.org/

6.4. Workflow and Interface Design

Parameter Description

text annotated text.
entityUri the identifier of the annotated entity.
surfaceForm the name of the annotated entity.
offset position of the first letter of the entity.
feedback indicates whether the annotation is correct or incorrect.
context indicates the context of the annotated corpus.
isManual indicates whether the feedback is sent by user or by other

NLP services.
senderIDs identifier(s) of the feedback sender.

Table 6.1.: NLP Feedback parameters.

Figure 6.3.: Screenshots of the conTEXT WYSIWYM interface (T2 indicates the
inline editing UI, V1 – the framing of named entities in the text, V2 –
text margin formatting for visualizing hierarchy, V7 – line connectors
to show the relation between entities, V9 – a callout showing additional
type information, X2 – faceted browsing, H3 – recommendation for
NLP feedback).

the data. The WYSIWYM interface as depicted in Figure 6.3 enables integrated
visualization and authoring of unstructured and semantic content (i.e. annotations
encoded in RDFa). The manual annotations are collected and sent as feedback
to the corresponding NLP service19. The feedback encompasses the parameters
specified in Table 6.1.

19DBpedia Spotlight Feedback API (http://spotlight.dbpedia.org/rest/feedback),
FOX Feedback API (http://139.18.2.164:4444/api/ner/feedback)

109

http://spotlight.dbpedia.org/rest/feedback
http://139.18.2.164:4444/api/ner/feedback

6. WYSIWYM for Lightweight Text Analytics

Figure 6.4.: Example of realtime semantic analysis in conTEXT.

Exploration and visualization interfaces. The dynamic exploration of content
indexed by the annotated entities facilitates faster and easier comprehension of the
content and provide new insights. conTEXT creates a novel entity-based search and
browsing interface for end-users to review and explore their content. On the other
hand, conTEXT provides different visualization interfaces which present, transform,
and convert semantically enriched data into a visual representation, so that, users
can explore and query the data efficiently. Visualization UIs are supported by
noise-removal algorithms which will tune the results for better representation and
will highlight the picks and trends in the visualizations. For example, we use a
frequency threshold when displaying single resources in interfaces. In addition,
a threshold based on the Dice similarity is used in interfaces, which display co-
occurrences. By these means, we ensure that the information overload is reduced
and that information shown to the user is the most relevant. Note that the user
can chose to deactivate or alter any of these thresholds.

Linked Data interface for Search Engine Optimization (SEO). As discussed
in Section 5.5.3, the Schema.org initiative provides a collection of shared schemas
that Web authors can use to markup their content in order to enable enhanced
search and browsing features offered by major search engines. A direct feature of
the Linked Data based text analytics with conTEXT is the provisioning of a SEO
interface. conTEXT encodes the results of the content annotation (automatic and
revisions by the user) in the JSON-LD format (cf. Section 3.3.1) which can be
directly exposed to schema.org aware search engines. This component employs

110

Schema.org

6.5. Views for Text Analytics

the current mapping from the DBpedia ontology to the Schema.org vocabularies20.
Thus the conTEXT SEO interface enables end-users to benefit from better exposure
in search engines (e.g. through Google’s Rich Text Snippets) with very little effort.

Real-time semantic analysis. In addition to its normal functionality, conTEXT
also supports real-time content analysis for streaming data like Twitter streams.
Figure 6.4 shows an example of real-time semantic anlaysis for Twitter streams
on specific hashtags.21 This way, users can see the live progress of different
analytics views on incoming data and thereby can quickly follow the trends that
are currently on the social media. Real-time analytics is also useful for the
companies and businesses to gain competitive advantage and to improve their
customer relationships by monitoring users feedback on social media Websites.

6.5. Views for Text Analytics

A key aspect of conTEXT is to provide intuitive exploration and visualization
options for the annotated corpora. For that purpose, conTEXT allows to plugin a
variety of different exploration and visualization modules, which operate on the
conTEXT data model capturing the annotated corpora. By default, conTEXT
provides the following views for exploring and visualizing the annotated corpora:

• Faceted browsing allows users to quickly and efficiently explore the corpus
along multiple dimensions (i.e. articles, entity types, temporal data) using
the DBpedia ontology. The faceted view enables users to drill a large set of
articles down to a set adhering to certain constraints.

• Matrix view shows the entity co-occurrence matrix. Each cell in the matrix
reflects the entity co-occurrence by entity types (color of the cell) and by the
frequency of co-occurrence (color intensity).

• Trend view shows the occurrence frequency of entities in the corpus over the
times. The trend view requires a corpus with articles having a timestamp
(such as blog posts or tweets).

• Image view shows a picture collage created from the entities Wikipedia
images. This is an alternative for tag cloud, which reflects the frequent
entities in the corpora by using different image sizes.

• Tag cloud shows entities found in the corpus in different sizes depending on
their prevalence. The tag cloud helps to quickly identify the most prominent
entities in the corpora.

20http://schema.rdfs.org/mappings.html
21An online demo of the real-time semantic analysis for Twitter is available at http://

context.aksw.org/resa.

111

http://schema.rdfs.org/mappings.html
http://context.aksw.org/resa
http://context.aksw.org/resa

6. WYSIWYM for Lightweight Text Analytics

Figure 6.5.: Different views on an analyzed corpus: 1) faceted browser, 2) matrix
view, 3) sentiment view 4) image view, 5) tag cloud, 6) chordal graph
view, 7) map view, 8) timeline, 9) trend view.

• Chordal graph view shows the relationships among the different entities in a
corpus. The relationships are extracted based on the co-occurrence of the
entities and their matching to a set of predefined natural language patterns.

• Places map shows the locations and the corresponding articles in the corpus.
This view allows users to quickly identify the spatial distribution of locations
refereed to in the corpus.

• People timeline shows the temporal relations between people mentioned in
the corpus. For that purpose, references to people found in the corpus are
enriched with birth and death days found in DBpedia.

• Sentiment view shows the overall sentiment of the corpus as well as the
sentiment of the individual articles in the corpus.

112

6.5.
V

iew
s

for
T

ex
t

A
n
aly

tics

Processing stage Component Input Output

Information access

RSS/Atom feeds
Textual or semi-
structured Web re-
sources

Corpus with metadata (e.g.
temporal annotations)

RDF/SPARQL endpoints
REST APIs
Custom crawlers & scrapers

Named Entity DBpedia Spotlight Corpus Semantically annotated cor-
pusRecognition FOX

Enrichment, BOA Semantically annotated corpus Automatically and manu-
ally enriched semantic an-
notations

authoring & feedback RDFaCE

Visualization &
exploration

Faceted browsing

Semantically annotated and
enriched corpus

Exploration and visualiza-
tion widgets leveraging vari-
ous semantic annotations

Map view
Timeline view
Tag cloud
Chordal graph view
Matrix view
Sentiment view
Trend view

Table 6.2.: conTEXT’s extensible architecture supports a variety of plug-able components for various processing and interaction
stages.

113

6. WYSIWYM for Lightweight Text Analytics

6.6. Implementation

conTEXT is a Web application implemented in PHP and JavaScript using
a relational database backend (MySQL). The application makes extensive use
of the Model-View-Controller (MVC) architecture pattern and relies heavily on
JSON format as input for the dynamic client-side visualization and exploration
functionality.

Figure 6.6.: conTEXT data model.

Figure 6.6 shows the conTEXT data model, which comprises Corpus, Article,
Entity and Entity Type tables to represent and persist the data for text analytics.
A corpus is composed of a set of articles or a set of other corpora (in case of a
mixed corpus). Each article includes a set of entities represented by URIs and
an annotation score. The Entity type table stores the type(s) for each entity.
As described in Section 6.4, conTEXT employs NIF for interoperability between
different NLP services as well as different corpora. Figure 6.7 shows a sample NIF
annotation stored for an article. In order to create the required input data structures
for different visualization views supported by D3.js and Exhibit, we implemented a
data transformer component. This component processes, merges and converts the
stored NIF formats into the appropriate input formats for visualization layouts (e.g.
D3 Matrix layout or Exhibit Map layout). After the transformation, the converted
visualization input representations are cached on the server-side as JSON files to
increase the performance of the system in subsequent runs.

One of the main design goals during the development of conTEXT was modularity
and extensibility. Consequently, we realized several points of extensibility for
implementation. For example, additional visual analysis views can be easily added.
Additional NLP APIs and data collectors can be registered (cf. Table 6.2). The
faceted browser based on Exhibit can be extended in order to synchronize it with
other graphical views implemented by D3.js and to improve the scalability of the
system. Support for localization and internationalization can be added into the
user interface as well as to the data processing components.

114

6.7. Evaluation

1 { "@article": "http://blog.aksw.org/2013/dbpedia-swj",

2 "@context": "http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#",

3 "resources": [

4 {
5 "@id": "http://dbpedia.org/resource/DBpedia",

6 "anchorOf": "DBpedia",

7 "beginIndex": "1144",

8 "endIndex": "1151",

9 "@confidence": "0.9",

10 "@type": "DBpedia:Software"

11 },
12 {
13 "@id": "http://dbpedia.org/resource/Freebase_(database)",

14 "anchorOf": "Freebase",

15 "beginIndex": "973",

16 "endIndex": "981",

17 "@confidence": "0.9",

18 "@type": "DBpedia:Misc"

19 },
20 ...

21]

22 }

Figure 6.7.: Generated semantic annotations represented in NIF/JSON.

Figure 6.8.: conTEXT task evaluation platform: Left – task view showing the
tasks assigned to an evaluation subject, Right – individual task.

6.7. Evaluation

The goal of our evaluation was two-fold. First, we wanted to provide quantitative
insights in the usefulness of conTEXT. To this end, we carried out a task-driven
usefulness study where we measured the improvement in efficiency and effectiveness
that results from using conTEXT. Second, we aim to evaluate the usability of our
approach.

115

6. WYSIWYM for Lightweight Text Analytics

6.7.1. Usefulness study

Experimental Setup To achieve the first goal of our evaluation, we carried out
controlled experiments with 25 users (20 PhD students having different backgrounds
from computer software to life sciences, 2 MSc students and 3 BSc students with
good command of English) on a set of 10 questions pertaining to knowledge
discovery in corpora of unstructured data. For example, we asked users the
following question: “What are the five most mentioned countries by Bill Gates
tweets?”. The 10 questions were determined as follows: We collected a set of 61
questions from 12 researchers of the University of Leipzig. These questions were
regarded as a corpus and analyzed using conTEXT. After removing questions that
were quasi-duplicates manually, we chose 10 questions that we subdivided into
2 sets of 5 questions. Each of users involved in the evaluation was then asked
to solve one set of questions with conTEXT and the other one without the tool.
In all cases, the users were given access to the corpus from which the question
was extracted. While answering the questions with conTEXT, the users used the
analysis abilities of conTEXT. Else, they were allowed to use all digital search
media of their choice except conTEXT. To ensure that we did not introduce any
bias in the results due to distribution of hard questions across the two sets, one
half of the users was asked to solve the first set of questions with conTEXT while
the others did the same with the second set and vice-versa. We evaluated the
users’ efficiency by measuring the time that they required to answer the questions.
Note that the users were asked to terminate any task that required more than 5
minutes to solve. In addition, we measured the users’ effectiveness by comparing
the answers of each user to a gold standard which was created manually by the
authors. Given that the answers to the questions were sets, we measured the
similarity of the answers A provided by the each user and the gold standard G by
using the Jaccard similarity of the two sets, i.e., |A∩G|

|A∪G| . The platform22 provided
users with a short tutorial on how to perform the tasks using conTEXT and how
to add their responses for the questions (cf. Figure 6.8).

Results The results of our first series of evaluations are shown in Figures 6.9
and 6.10. On average, the users required 136.4% more time without conTEXT
than when using the tool. A fine-grained inspection of the results suggests that our
approach clearly enables users to perform tasks akin to the ones provided in the
evaluation in less time. Especially complex tasks such as “Name a middle-eastern
country that has never been spoken of in the AKSW blog” are carried out more
than three times faster using conTEXT. In some cases, conTEXT even enables
users to carry out tasks that seemed out of reach before. For example, the question
“What are the five most mentioned countries by Bill Gates’ tweets?” (Q10) was
deemed impossible to answer in reasonable time by using normal search tools by
several users. A look at the effectiveness results suggests that those users who tried

22available at http://context.aksw.org/app/evaluation

116

http://context.aksw.org/app/evaluation

6.7. Evaluation

Figure 6.9.: Avg. Jaccard similarity in-
dex for answers using &
without the conTEXT.

Figure 6.10.: Avg. time spent (in second)
for finding answers using &
without the conTEXT.

to carry out these task without conTEXT failed as they achieve an average Jaccard
score of 0.17 on this particular task while users relying on conTEXT achieve 0.65.
The overall Jaccard score with conTEXT lies around 0.57, which suggests that the
tasks in our evaluation were non-trivial. This is confirmed by the overall score
of 0.19 without conTEXT. Interestingly, the average effectiveness results achieve
by users with conTEXT are always superior to those achieved without conTEXT,
especially on task Q8, where users without conTEXT never found the right answer.
Moreover, in all cases, the users are more time-efficient when using conTEXT than
without the tool.

6.7.2. Usability study

Experimental Setup The goal of the second part of our evaluation was to assess
the usability of conTEXT. To achieve this objective, we used the standardized,
ten-item Likert scale-based System Usability Scale (SUS) [Lewis and Sauro, 2009]
questionnaire and asked each person who partook in our usefulness evaluation
to partake in the usability evaluation. The questions were part of a Google
questionnaire and can be found at http://goo.gl/JKzgdK.

Results The results of our study (cf. Figure 6.11) showed a mean usability score
of 82 indicating a high level of usability according to the SUS score. The responses
to question 1 suggests that our system is adequate for frequent use (average score
to question 1 = 4.23 ± 0.83) by users all of type (4.29 ± 0.68 average score for
question 7). While a small fraction of the functionality is deemed unnecessary by
some users (average score of 1.7± 0.92 to question 2, 1.88±1.05 to question 6 and
1.76±1.09 to question 8), the users deem the system easy to use (average score
of 4.3± 0.59 to question 3). Only one user suggested that he/she would need a

117

http://goo.gl/JKzgdK

6. WYSIWYM for Lightweight Text Analytics

Figure 6.11.: Result of conTEXT usability evaluation using SUS questionnaire.

technical person to use the system, while all other users were fine without one.
The modules of the system in itself were deemed to be well integrated (4.23±0.66
average score to question 5). Overall, the output of the system seems to be easy
to understand (4.11 ± 1.05 score to question 9) while users even without training
assume themselves capable of using the system (1.52± 0.72 to question 10). These
results corroborate the results of the first part of our evaluation as they suggest
that conTEXT is not only easy to use but provides also useful functionality.

6.8. Conclusion

This chapter addressed the research question RQ4 (cf. Section 1.3) to exploit
semantically-enriched content for content analysis. With conTEXT, we showcased
an innovative text analytics application for end-users, which integrates a number
of previously disconnected technologies. In this way, conTEXT is making NLP
technologies more accessible, so they can be easily and beneficially used by arbitrary
end-users. With regards to RQ4.1, conTEXT provides users with instant benefits
for manual content annotation by empowering users to gain novel insights and to
complete tasks, which previously required substantial development.

118

Chapter 7

WYSIWYM for Authoring of
E-Learning Content

“There are three ingredients in the good life:
learning, earning and yearning.”

— Christopher Morley

In this chapter we present an application called SlideWiki for collaborative au-
thoring of semi-structured educational content. SlideWiki employs the WYSIWYM
concept for user-friendly authoring of semi-structured e-learning content – in par-
ticular, presentations, slides, diagrams and self-assessment tests. In order to
support collaboration and crowdsourcing, SlideWiki utilizes our proposed data
model called WikiApp. Two use cases of SlideWiki as a platform of authoring of
OpenCourseWare and as a tool for elicitation and sharing of corporate knowledge
are also described in this chapter.

The rest of the chapter is organized as follows: Section 7.1 describes our pro-
posed data model WikiApp for supporting collaboration and crowdsourcing. In
Section 7.3, we introduce SlideWiki as an implementation of WikiApp data model
together with two use cases. Section 7.4 elaborates on the architecture and techni-
cal implementation details of SlideWiki application. In Section 7.5, we provide
a comparison between SlideWiki and existing presentation management systems.
Results of our usability evaluation are reflected in Section 7.6. Finally we conclude
the chapter in Section 7.7.1

7.1. WikiApp Data Model

Ward Cunningham’s Wiki [Leuf and Cunningham, 2001] paradigm is mainly
only applied to unstructured, textual content thus limiting the content structuring,
repurposing and reuse. More recently with the appearance of Semantic Wiki’s, the
concept was also applied and extended to semantic content[Schaffert et al., 2008].
There are currently two types of Semantic Wikis. Semantic Text Wikis, such as
Semantic MediaWiki [Krötzsch et al., 2007] or KiWi [Schaffert et al., 2009] are
based on semantic annotations of the textual content. Semantic Data Wikis, such
as OntoWiki [Auer et al., 2006], are based on the RDF data model in the first place.
Both types of Semantic Wikis, however, suffer from two disadvantages. Firstly,

1The contents of this chapter have been published as [Khalili et al., 2012b, Tarasowa et al.,
2013, Auer et al., 2013, Tarasowa et al., 2014]. Some parts of this chapter are written jointly by
Darya Tarasowa (http://aksw.org/DaryaTarasowa).

119

http://aksw.org/DaryaTarasowa

7. WYSIWYM for Authoring of E-Learning Content

Figure 7.1.: Schematic view of the WikiApp data model.

their performance and scalability is restricted by current triplestore technology
(cf. Section 2.5), which is still an order of magnitude slower when compared with
relational data management, which is regularly confirmed by SPARQL benchmarks
such as BSBM [Bizer and Schultz, 2009]. Secondly, Semantic Wikis are generic tools,
which are not particularly adapted for certain domains thus substantially increase
the usage complexity for users. The latter problem was partially addressed by
OntoWiki components such as Erfurt API2, RDFauthor3 and Semantic Pingback4,
which evolved OntoWiki into a framework for Web Application development [Heino
et al., 2009].

In many potential usage scenarios, the content to be managed by a wiki is
neither purely textual nor fully semantic. Often (semi-)structured content (e.g.
presentations, educational content, laws, skill profiles etc.) should be managed
and the collaboration of large user communities around such content should be
effectively facilitated.

In this section we introduce the fundamental WikiApp concept. The WikiApp
concept is based on the following principles:

• Provenance. The origin and creation context of all information in a WikiApp
implementation should be preserved and well documented.

• Transparency, openness and peer-review. Content in a WikiApp implementa-
tion should be visible and easily observable for the largest possible audience,
thus facilitating review and quality improvements.

• Simplicity. WikiApp implementations should be simple to build and use.

2https://github.com/AKSW/Erfurt
3http://aksw.org/Projects/RDFauthor
4http://aksw.org/Projects/SemanticPingback

120

https://github.com/AKSW/Erfurt
http://aksw.org/Projects/RDFauthor
http://aksw.org/Projects/SemanticPingback

7.1. WikiApp Data Model

• Social collaboration. Following other users, watching the evolution of content
as well as reusing and re-purposing of content in social collaboration networks
is at the heart of WikiApp.

• Scalability. WikiApp implementations should be scalable and be imple-
mentable according to established Web application development practices
(such as the MVC pattern).

The aim of the WikiApp concept is to provide a framework for implementing
these principles similarly to Ward Cunningham’s Wiki concept for traditional text
wikis. However, due to the increased complexity of the (semi-)structured content
and operations on this content just a high level description of principles is not
sufficient to support the creation of domain-specific WikiApp implementations.
By devising a formal WikiApp concept we aim to provide a clear and consistent
description of the approach, which simplifies the creation of concrete WikiApp
instantiations and can be used as a basis for integration WikiApp support into
engineering methodologies, development frameworks as well as model-driven code
generators. In the sequel, we present a formal description of the WikiApp data
model and describe then the base operations on this data model.

7.1.1. Data Model

The WikiApp data model is a refinement of traditional Entity-Relation (ER)
data model. It adds some additional formalisms in order to make users as well as
ownership, part-of and derived-from relationships first-class citizens of the data
model. We illustrate the WikiApp model in Figure 7.1 and formally define it as
follows:

Definition 4 (WikiApp data model). The WikiApp data model WA can be
formally described by a triple WA = (U, T,O) with:

• U a set of users.

• T a set of content types with associated property types Pt having this content
type as their domain.

• O = {Ot∈T} with Ot being sets of content objects for each content type t ∈ T .
Each Ot consists of content objects ot,i = {Pt,i, bt,i, ut,i, ct,i} with:

– i ∈ IT being a suitable identifier set for the content objects in Ot;

– properties Pt,i = Attrt,i∪Relt,i∪Partt,i with Attrt,i being a set of literal,
possibly typed attributes, Relt,i being a set of relationships with other
content objects, Partt,i being a set of part-of and has-part relationships
referring to other content objects;

– bt,i ∈ Ot ∪ NULL referring to base content object from which this
content object was derived;

121

7. WYSIWYM for Authoring of E-Learning Content

– ut,i ∈ U referring to a user being the owner of this content object;

– ct,i containing the creation timestamp of object ot,i.

The WikiApp data model assumes that all content objects are versioned using
the timestamp ct,i and the base content object relation bt,i. In practice, however,
usually only a subset of the content objects are required to be versioned. For
auxiliary content (such as user profiles, preferences etc.) it is usually sufficient to
omit a base content object relation. For reasons of simplicity of the presentation
and space restrictions we have omitted a separate consideration of such content
here. However, this is in fact just a special case of the general WikiApp data
model, where the base content object relation bt,i is empty for a subset of the
content objects.

The WikiApp data model is compatible with both the relational data model as
well as the RDF data model. When implemented as relational data, content types
correspond to tables and content objects to rows in these tables. Functional at-
tributes and relationships as well as the owner and base-content-object relationships
can be modeled as columns (the latter three representing foreign-key relationships)
in these tables. For 1− n and m− n relationships and non-functional attributes
suitable helper tables have to be created. The implementation of the WikiApp
data model in RDF is slightly more straightforward: content types resemble classes
and content objects instances of these classes. Attributes and relationships can be
attached to the classes via rdfs:domain and rdfs:range definitions and directly
used as properties of the respective instances. For reasons of scalability we expect
the WikiApp data model to be mainly used with relational backends. However,
using techniques such as Triplify [Auer et al., 2009] or other RDB2RDF [Sahoo
et al., 2009] mapping techniques a Linked Data interface can be easily added to
any WikiApp implementation (cf. Section 7.4).

Example 7.1 [SlideWiki data model] For our SlideWiki example
application (whose implementation is explained in detail in Section 7.4)
the data model consists of individual slides (consisting mainly of HTML
snippets and some meta-data), decks (being ordered sequences of slides
and sub-decks), media assets (which are used within slides) as well as
themes (which are associated as default styles with decks and users):

• T = {deck, slide,media, theme}
• Attrdeck = {title→ text, abstract→ text,

license→ {CC −BY,CC −BY − SA}},
Reldeck = {default theme→ theme},
Partdeck = {deck content→ deck ∪ slide}

• Attrslide = {content→ text, speaker note→ text,
license→ {CC −BY,CC −BY − SA}},

Relslide = {uses→ media}, Partslide = {}

122

7.1. WikiApp Data Model

• Attrmedia = {type→ {image, video, audio}, uri→
string, license→ {CC −BY,CC −BY − SA}},

Relmedia = {}, Partmedia = {}
• Attrtheme = {title→ string, css definition→ text},
Reltheme = {}, Parttheme = {}

7.1.2. Operations

After we introduced the WikiApp data model, we now describe the main opera-
tions on the data model. In the spirit of the Wiki paradigm, there is no deletion or
updating of existing, versioned content objects. Instead new revisions of content
objects are created and linked to their base objects via the bt,i relation.

Definition 5 (WikiApp operations). Five base operations are defined on the
WikiApp data model:

• create(u, t, p) : U × T × Pt → Ot creates a new content object of type t with
the owner u and properties p.

• newRevision(u, t, i, p) : U × T × IT × Pt → Ot creates a copy of an existing
content object ot,i of type t potentially with a new owner u and overriding
existing properties with p.

• getRevision(t, i) : T × IT → Ot ∪ false returns the existing content object
ot,i of type t including all its properties or false in case a content object of
type t with identifier i does not exist.

• isWatching(u, t, i) : U × T × IT → {true, false} returns true if the user u
is watching the content object of type t with identifier i or false otherwise.
Following users is a special case, where the content object type is set to user.

• watch(u, t, i) : U × T × IT → {true, false} toggles user u watching the
content object of type t with identifier i and returns the new watch status.

All operations have to be performed by a specific user and the newly created
content objects will have this user being associated as their owner. In addition,
when a new revision of an existing content object is created and the original content
object is indicated to be part of another content object (by the distinguished part-of
relations) the creation of a new revision of the containing content object has to be
triggered as well. In our Example 1, this is, for example, triggered when a user
creates a new revision of a slide being part of a deck. If the user is not the owner
of the containing deck, a new deck revision is automatically created, so as to not
implicitly modify other users’ decks.

123

7. WYSIWYM for Authoring of E-Learning Content

Figure 7.2.: Instantiation of the WikiApp DSL representing the SlideWiki model.

7.2. Model-driven generation of WikiApp
implementations

Using a model-driven Web application engineering approach, developers are able
to easily and quickly implement WikiApp applications. We devised a Domain-
Specific Language (DSL) based on the WikiApp Data Model and a transformation
approach implemented in a tool called Wikifier 5 which receives a WikiApp definition
in the DSL and generates the appropriate database (or RDF) schema, classes
and methods for interacting with this model as well as the required SQL (or
SPARQL) queries. The Wikifier DSL is dedicated to the specific WikiApp problem
representation technique. In essence its a YAML-formatted6 file with the definition
of content types, their attributes, relations and part-of relations according to the
WikiApp data model (cf. Definition 4). Figure 7.2 shows an instantiation of this
DSL for our SlideWiki example application.

The Wikifier model transformation is integrated into the code generator of the

5Available at: http://slidewiki.aksw.org/wikifier/
6YAML Ain’t Markup Language: http://yaml.org/

124

http://slidewiki.aksw.org/wikifier/
http://yaml.org/

7.3. SlideWiki

Figure 7.3.: Generated database schema by Wikifier.

Symfony framework7 which is based on the MVC design pattern. It transforms the
DSL instantiation to the corresponding data models with basic Create-Retrieve-
Update-Delete (CRUD) operations and the corresponding views and controllers.
The generated models will include the following extensions derived from the
WikiApp data model:

(a) A revision model for each content object with timestamp and based_on

properties.

(b) A partOf model which includes the identifier properties of the selected revision
models.

(c) A subscription model which is used for following revision models.

(d) A user model which is referred by each of the generated revision models.

The database schema generated by Wikifier for SlideWiki example is depicted
in Figure 7.3. In addition to the generic WikiApp operations (cf. Definition 5)
Wikifier creates convenience methods for performing these operations directly from
the respective content object classes.

7.3. SlideWiki

In this section we describe with SlideWiki a concrete WikiApp implementation,
which we created to demonstrate the effectiveness and efficiency of the WikiApp
approach. SlideWiki is available publicly at http://slidewiki.org. The main
idea of SlideWiki is to enable crowdlearning – the crowdsourcing of educational
content, in particular presentations. The SlideWiki data model was already
introduced in Example 1 and shows the relatively complex relationships between
decks, slides, media assets and themes. In the sequel, we present two use cases of
the SlideWiki application.

7http://symfony.com/

125

http://slidewiki.org
http://symfony.com/

7. WYSIWYM for Authoring of E-Learning Content

Figure 7.4.: Crowdlearning strategies in SlideWiki.

7.3.1. Authoring of OpenCourseWare

While nowadays there is a plethora of Learning Content Management Systems
(LCMS), the collaborative, community-based creation of rich e-learning content is
still not sufficiently well supported. Few attempts have been made to apply crowd-
sourcing and Wiki-approaches for the creation of e-learning content. Wikiversity8,
for example, is a Wikimedia Foundation project aiming to leverage standard wiki
technology for the creation of hypertext e-learning content. Peer 2 Peer University
(P2PU)9 and PlanetMath10 are other examples which employ crowdsourcing to
create rich e-learning content. P2PU helps users to navigate the wealth of open
education materials and supports the design and facilitation of courses. The
PlanetMath is a project aiming to become a central repository for mathematical
knowledge on the web, with a pedagogical mission. However, we deem, that no
real attempt has been made so far to truly apply the concepts behind Wikis and
crowdsourcing to develop a specifically tailored technology supporting the creation
of (semi-)structured e-learning content.

As defined by Open Education Consortium11, OpenCourseWare (OCW) is a free
and open digital publication of high quality college and university-level educational
materials. OCW are free and openly licensed, accessible to anyone, anytime via
the internet. As an OCW authoring platform, SlideWiki deals with two types
of (semi-)structured learning objects: slide presentations and assessment tests.
SlideWiki empowers communities of instructors, teachers, lecturers, academics to
create, share and re-use multilingual educational content in a collaborative way.

As depicted in Figure 7.4, to support crowdlearning, SlideWiki realizes the
following strategies:

• Standard-compliance. SlideWiki adopts the Sharable Content Object Refer-

8http://wikiversity.org/
9http://p2pu.org/

10http://planetmath.org/
11http://www.openedconsortium.org

126

http://wikiversity.org/
http://p2pu.org/
http://planetmath.org/
http://www.openedconsortium.org

7.3. SlideWiki

ence Model (SCORM) standard [ADL, 2011a] and practical recommenda-
tions [ADL, 2011b] and expands the standard for the collaborative model.
This will decrease the costs associated with building high-quality e-learning
content by importing/exchanging content from/between existing LCMSs.

• Semantic structuring. Instead of dealing with large learning objects (often
whole presentations or tests), SlideWiki employes the WikiApp data model
to decompose learning material into fine-grained learning artifacts.

• Reuse and repurpose. Instead of the full redevelopment, the content can
slightly evolve in SlideWiki. This will decrease the cost of content creation,
will increase the quality of e-learning content and will support the evolution
and adaptation to new requirements.

• Crowdsourcing. There are already vast amounts of amateur and expert users,
which are collaborating and contributing on the Social Web. Harnessing the
power of such crowds in SlideWiki can significantly enhance and widen the
distribution of e-learning content.

• Social networking. The theoretical foundations for e-Learning 2.0 are drawn
from social constructivism [Wang et al., 2012]. It is assumed that students
learn as they work together to understand their experiences and create
meaning. SlideWiki supports social networking activities (e.g. following,
discussing, sharing, rating slides and presentations) to enable students to
proactively interact with each other to acquire knowledge.

• Support of multilinguality. SlideWiki enables the crowd-translation of content
to promote open e-learning material among different countries.

• Progress evaluation. SlideWiki supports the creation of questions and self-
assessment tests based on slide material. This will enable users to evaluate
their progress while learning.

SlideWiki brings the following benefits for academic learning:
It enables educators, lecturers and teachers to

• increase the user base by making the content accessible to a world-wide
audience.

• get their high-quality e-learning content translated into many different lan-
guages.

• engage students in contributing to and discussing the slides.
• create (self-)assessment tests for students.
• involve peer-educators in improving and maintaining the quality and attrac-

tiveness of their e-learning content.
• increase the reputation in the community, by sharing qualitative e-learning

content.
Students can also

127

7. WYSIWYM for Authoring of E-Learning Content

• view rich-learning content right in a browser.
• discuss particular content (e.g. a slide or question) with other students and

instructors.
• contribute additional content, improvements and feedback.
• assess learning progress using the questionnaires attached to presentations.

7.3.2. Elicitation and Sharing of Corporate Knowledge

In medium and large enterprises and organizations presentations are crucial
elements of the corporate knowledge exchange. Such organizations are mostly hier-
archically organized and communication and knowledge flows usually accompany
corporate hierarchies. In addition to sending emails and documents, meetings
where presentations are shown to co-workers, subordinates and superiors are one
of the most important knowledge exchange functions. Research conducted by the
Annenberg School of Communications at UCLA and the University of Minnesota’s
Training & Development Research Center show that executives on average spend
40-50% of their working hours in meetings.12 They spend a remarkable amount
of time collecting their required materials and creating new presentations. The
challenges with current organizational presentations can be roughly divided into
the following categories:

• Sharing and reuse of presentations. Much of the corporate strategy, direction
and accumulated knowledge is encapsulated in presentation files; yet this
knowledge is effectively lost because slides are inaccessible and rarely shared.
Furthermore offline presentations are hard to locate. Thereby executives
usually spend their time creating new slides instead of re-using existing
material.

• Collaborative creation of presentations. Executives in different departments or
countries often unknowingly duplicate their efforts, wasting time and money.
To collaboratively create a presentation, the members need to manually
download and merge the presentations.

• Following/discussing presentations. Finding the most up-to-date presentation
is difficult and time-consuming, therefore costly. Furthermore, discussing the
content of presentations in face-to-face meetings or email discussions is not
efficient within organizations.

• Tracking/handling changes in presentations. Tracking and handling changes
that occur within different presentations is a time-consuming task which
needs opening all offline presentations and manually comparing their content.
Additionally there are hundreds of slide copies to change when an original is
modified. This cascading change costs a fortune each time.

12http://www.shirleyfinelee.com/MgmtStats

128

http://www.shirleyfinelee.com/MgmtStats

7.3. SlideWiki

• Handling heterogeneous presentation formats. Presentations can be created
in different formats (e.g. Office Open XML, Flash-based, HTML-based or
LaTeX-based presentations) thereby integration and reuse of them will be a
cumbersome task for organization members.

• Ineffective skills management and training. Medium and large enterprises
are obliged by law to provide means for training and qualification to their
employees. This is usually performed by seminars, where training material is
prepared in the form of presentations. However, it is usually not possible to
provide engaging bi-directional and interactive means of knowledge exchange,
where employees contribute to the training material.

• Preserving organization identity. Having a consistent template and theme
including the logo and brand message of organization is of great significance
in shaping the organization identity. With offline presentations it is difficult
to persistently manage and sustain specific organization templates. Everyone
needs to take care of templates and themes individually and managing the
changes takes a remarkable amount of time.

SlideWiki as a crowdsourcing platform deals with most of the above-mentioned
limitations of current presentation tools within organizations. As a tool for
knowledge management within organizations, SlideWiki can be applied to the
following areas:

Developing a shared mental model within organization. In organizational
learning, learning occurs through shared insights and mental models. In this
process, organizations obtain the knowledge that is located in the minds of their
members or in the epistemological artifacts (maps, memories, policies, strategies
and programs) and integrates it with the organizational environment [Valaski
et al., 2012]. This shared mental model (a.k.a. organizational memory) is the
accumulated body of data, information, and knowledge created in the course of an
individual organization’s existence.

Combining presentations with social approaches for crowdsourcing. Presen-
tations when combined with crowdsourcing and collaborative social approaches can
help organizations to cultivate innovation by collecting and expressing the individ-
ual’s ideas within organizational social structures. As discussed in [Blankenship
and Ruona, 2009], there are different types of social structures living in the context
of organizations. Work groups, project teams, strategic communities, and learning
communities, communities of practice, informal networks, etc. to mention some.
These social structures make use of presentations frequently to present and discuss
their internal ideas. Therefore, creating an integrated collaborative platform for
authoring and sharing presentations will result in exchanging knowledge within
and cross these social structures (even supporting inter-organizational knowledge
transfer).

129

7. WYSIWYM for Authoring of E-Learning Content

Slides Structures

& Tags

Templates & Themes

Questionnaires

Discussions

Sharing/Reusing presentations

Collaborative authoring of presentations

Following/Discussing presentations

Tracking/Handling changes in presentations

Designing consistent templates and themes

Creating questionnaires and evaluation tests

Crossing organization &

functional boundaries

Organizational Memory

Organizational

Support

Measurments

Incentives

To reinforce value of sharing

In support of contribution

Vision
Value

System

S
li
d

e
W

ik
i
p

la
tf

o
rm

K
n

o
w

le
d

g
e

C
o

m
m

u
n

it
ie

s

Figure 7.5.: SlideWiki ecosystem for organizational knowledge sharing.

As a driver for organizational innovation. Presentations are an important driver
of organizational innovation particularly when they are exchanged between social
connections that cross functional and organizational boundaries. As discussed in
[Fonstad, 2005], improvising is a structured process of innovation that involves
responding to changing situations with resources at hand by creating a production
and adapting it continuously. Presentation tools enable the creation of so called
Structural Referents – a representation one develops about a structure. Structural
referents support the communities to collaborate on individual’s ideas and foster
the potential ideas in alignment with the organizational goals. Ghost Sliding is a
process introduced in [Fonstad, 2005] which utilizes presentation slides as structural
referents for collaborative knowledge management. Ghost sliding is an iterative
process where consultants draw up quick, rough representations of each slide and
discuss them with clients to develop consensus on what statements are going to be
included in the final presentation and what data needs to be collected to support
those statements. The rationale for ghost-sliding is that by developing explicit

130

7.4. Implementation

representations of what a consultant is striving for, the consultant could discuss
the hypotheses with others and be more efficient about what kind of data to look
for.

As a media for knowledge exchange and training. As reported in [Cobb and
Steele, 2011], PowerPoint presentations are the most used (75.4 %) tool for devel-
oping e-learning content within organizations. Presentations contain visualized
learning materials, which improve the training of organization members having
different levels of knowledge. Enabling users to contribute to these training mate-
rials makes it possible to provide engaging bi-directional and interactive means of
knowledge exchange.

SlideWiki provides a crowdsourcing platform for elicitation and sharing of
corporate knowledge using presentations. It exploits the wisdom, creativity and
productivity of the crowd for the collaborative creation of structured presentations.
Figure 7.5 shows the SlideWiki ecosystem for supporting organizational knowledge
management. SlideWiki provides a collaborative environment, which enables
knowledge communities to contribute to dynamic parts of organizational memory,
which is encapsulated in presentations. The dynamic view of the structure of
organizational memory [Casey and Olivera, 2011] takes into account the social
nature of memory. Rather than viewing memory as knowledge stored in a collection
of retention bins, the emphasis is on memory as continually constructed and
reconstructed by humans interacting with each other and their organizational
environment.

In SlideWiki, users from different knowledge communities crossing the orga-
nization and functional boundaries can collaboratively create structured online
presentations. Users can assign tags and categories for structuring the presenta-
tions. The created presentations can be shared and reused to build new synergetic
presentations. Users can also track and manage changes occurring within presenta-
tions using a revisioning system. Additionally, SlideWiki includes an e-learning
component that deals with questionnaires created for each presentation slide. Ques-
tionnaires together with the evaluation tests facilitate the training of users within
organizations. With regard to preserving the organization identity and branding,
SlideWiki supports creating and sharing of templates and themes. Apart from the
contribution on authoring of presentation content, SlideWiki also supports social
networking activities such as following presentation decks, slides and users as well
as discussing the created content.

7.4. Implementation

The SlideWiki application makes extensive use of the MVC architecture pattern.
The MVC architecture enables the decoupling of the user interface, program logic
and database controllers and thus allows developers to maintain each of these
components separately. As depicted in Figure 7.6, the implementation comprises

131

7. WYSIWYM for Authoring of E-Learning Content

Slides Structures

& Tags

Templates & Themes

Questionnaires

Discussions

Authoring
Search &

Browsing
Styling

Social

Networking
E-Learning

Frontend

File
formats

Import/

Export

Linked

Data

Interface

Human Users Machine

Tr
ip

lif
y/

Sp
ar

q
lif

y

Triple
 StoreRelational Database

V
ie

w
M

o
d

e
l

C
o

n
tr

o
lle

r

Ajax Controller

Change

Management
Translation

WYSIWYM

Figure 7.6.: Bird’s eye view on the SlideWiki MVC architecture.

the main components: WYSIWYM authoring, change management, search and
browsing, styling, e-learning, social networking, import/export, translation as well
as linked data interface.. We briefly walk-through these components in the sequel.

WYSIWYM Authoring. SlideWiki employs the WYSIWYM interface model
together with an inline HTML5 based WYSIWYG text editor for authoring the
presentation slides (cf. Figure 7.7). Using this approach, users will see the
slideshow output at the same time as they are authoring their slides. The editor is
implemented based on ALOHA editor13 extended with some additional features
such as image manager, source manager, equation editor. The inline editor uses
Scalable Vector Graphics (SVG) images for drawing shapes on slide canvas. Editing
SVG images is supported by SVG-edit14 with some predefined shapes which are
commonly used in presentations. For logical structuring of presentations, SlideWiki
utilizes a tree structure together with a context menu by which users can append
new or existing slides/decks and drag & drop items for positioning. When creating
presentation decks, users can assign appropriate tags as well as footer text, default
theme/transition, abstract and additional meta-data to the deck.

13http://aloha-editor.org/
14http://code.google.com/p/svg-edit/

132

http://aloha-editor.org/

7.4. Implementation

Figure 7.7.: Screenshots of the SlideWiki WYSIWYM interface (V2 – text margin
formatting for visualizing content tree, V7 – line connectors to show
the relation between slides and decks, X4 – expanding & drilling down
to explore content, T4 – drag & drop to change the order of slides
and decks, T6 – floating ribbon editing to author slide content, H5 –
collaboration and crowdsourcing helper components).

Change management. Revision control is natively supported by WikiApp data
model. We just define rules and restrictions to increase the performance. There
are different circumstances in SlideWiki for which new slide or deck revisions have
to be created. For decks, however, the situation is slightly more complicated, since
we wanted to avoid an uncontrolled proliferation of deck revisions. This would,
however, happen due to the fact, that every change of a slide would also trigger
the creation of a new deck revision for all the decks the slide is a part of. Hence,
we follow a more retentive strategy. We identified three situations that have to
cause the creation of new revisions:

• The user specifically requests to create a new deck revision.

• The content of a deck is modified (e.g. slide order is changed, change in
slides content, adding or deleting slides to/from the deck, replacing a deck
content with new content, etc.) by a user which is neither the owner of a
deck nor a member of the deck’s editor group.

133

7. WYSIWYM for Authoring of E-Learning Content

user requests to copy a deck

add/remove item to/from deck

change the order of items in a deck

replace/change the content of a deck

change the slide content

new slide revision

user is the owner of
the container deck

yes
no

yes

no

new deck revision

container deck has
usage somewhere else

Figure 7.8.: Decision flow during the creation of new slide and deck revisions.

• The content of a deck is modified by the owner of a deck but the deck is
used somewhere else.

The decision flow is presented in Figure 7.8. In addition, when creating a new deck
revision, we always need to recursively spread the change into the parent decks
and create new revisions for them if necessary.

Search and Browsing. There are three ways of searching in SlideWiki: by
keywords, by metadata and by user (who contributed or follows certain content).
We combined keywords and tag search so that users can either 1) search by keywords
and then add a tag filter, or 2) show all slides or decks having the tag and then
running an additional keyword search on the results. In both cases an ordering a
user might have applied is preserved for subsequent searches. In addition to the
deck tree user interface for browsing the presentations, a breadcrumb navigation
bar is implemented in SlideWiki. Breadcrumb improves the accessibility of system
by increasing the user awareness when browsing nested presentations.

Styling. In order to create flexible and dynamic templates and styles for presenta-
tions, SlideWiki utilizes Saas (Syntactically Awesome Stylesheets) language15. Sass
extends CSS by providing several mechanisms available in programming languages,
particularly object-oriented languages, but not available in CSS3 itself. When
Sass script is interpreted, it creates blocks of CSS rules for various selectors as
defined by the Sass file. Using Saas, SlideWiki users can easily create and reuse
presentation themes and transitions.

15http://sass-lang.com/

134

http://sass-lang.com/

7.4. Implementation

Figure 7.9.: Editing of a question & Test mode in SlideWiki.

E-learning. SlideWiki supports the creation of questions and self-assessment tests
based on slide material. Each question has to be assigned to at least one slide.
Important note here, that the question is assigned not to the slide revision, but to
slide itself. Thus, when a new slide revision appears, it continues to include all the
list of previously assigned questions. Questions can be combined into tests. The
automatically created tests include the last question revisions from all the slides
within the current deck revision. Manually created tests present a collection of
chosen questions (cf. Figure 7.9).

Social Networking. As a social software, SlideWiki supports different types of
social networking activities. Users can follow items such as decks, slides and other
users. They can also rate, tag and discuss decks and slides. Content syndication in
multiple formats such as RSS, ATOM, OPML and JSON is provided for created
items so that users can subscribe to them. We are currently integrating SlideWiki
with popular social networking sites like Twitter, Facebook, GooglePlus and
LinkedIn.

Import/Export. SlideWiki implementation addresses interoperability as its first
class citizen. SlideWiki supports import/export of the content from/to existing
desktop applications and Learning Objects RepositoryLearning Objects Repositories

135

7. WYSIWYM for Authoring of E-Learning Content

(LORs) thereby allowing users from other LCMSs to access the created content.
The main data format used in SlideWiki is HTML. However, there are other
popular presentation formats commonly used by desktop application users, such
as PowerPoint .pptx presentations, LATEXand others. We implemented import of
the slides from .pptx format and work on the LATEXformat support is in progress.

Translation Our architecture allowed us to implement a translation feature backed
by the Google Translate service. After the translation into one of 54 supported
languages, the presentation can be edited independently from the original one.

Linked Data Interface. While sharing and reusing educational data across in-
stitutional and national boundaries is a general goal for both the public and the
private education sector, the last decade has seen a large amount of research
dedicated to Web-scale interoperability. For example, LinkedEducation.org is
an open platform which promotes the use of Linked Data for educational pur-
poses. In order to enable the export of SlideWiki content on Data Web as LORs,
we employed the RDB2RDF mapping tool Triplify [Auer et al., 2009] to map
SlideWiki content to RDF and publish the resulting data on the Data Web. The
Triplify configuration for SlideWiki was created manually according to IEEE
Learning Objects Metadata (LOM) standard and can be changed to support
specific LORs. The SlideWiki Triplify Linked Data interface is available via:
http://slidewikiw.org/triplify.

selection of a function inside the controller

function parameters

anchor for initializing state in JavaScript

selection of a controller

http://slidewiki.aksw.org/main/deck/1#tree-1-slide-1-1-view

Figure 7.10.: Mapping of URLs to MVC actions in SlideWiki.

Frontend. In addition to overall MVC pattern, SlideWiki utilizes a client-side
MVC approach (implemented in JavaScript and running inside the users Web
browser) to provide users with a rich and interactive user interface. As described
in Figure 7.10, there is a hash fragment in the request URL which acts as an input
for the client-side MVC handler. This fragment consists of an identifier and an
action name. The identifier itself has four parts which are combined based on the
following pattern:
tree-{container_deck_id}-{content_type}-{content_id}-{content_position}.
For example, tree-1-slide-5-2-view refers to the view action which is assigned
to the slide with id 5, located at second position of deck with id 1.

136

LinkedEducation.org
http://slidewikiw.org/triplify

7.5. SlideWiki vs. Presentation Management Systems

The client-side MVC handler as (singleton) controller listens to the hash fragment
and once a change has occurred the handler triggers the corresponding actions.
Each action has a JavaScript template (implemented using jQuery templates) with
the corresponding variable place holders. For each action an Ajax call is made
and the results are returned to the controller in JSON format. Subsequently, the
controller fills the templates with the results and renders them in the browser.

7.5. SlideWiki vs. Presentation Management
Systems

There are already many Web-based platforms that provide services for online
creation, editing and sharing of presentations. SlideShare.net is a popular Website
for sharing presentations16. Comparing to SlideWiki, it does not provide any
feature to create and reuse the content of presentations. SlideRocket.com and
Prezi.com are other related works which help people to create fancy and zoomable
presentations. In contrast to SlideWiki, they focus more on the visualization aspects
rather than the content of the presentations. Microsoft SharePoint Online 17 and
SlideBank.com are two commercial solutions which provide the feature of slide
libraries to allow users to work with PowerPoint slide decks stored in the cloud.
Despite SlideWiki which is an online platform, these tools adopt the Software-as-a-
Service approach to enable a synchronization between desktop applications and
Web service providers.

7.6. Usability Evaluation

SlideWiki has been already used for teaching Business Information Systems
and Semantic Web lectures in the Chemnitz Technical University, University of
Leipzig and University of Bonn. Figure 7.11 shows an screenshot of the Semantic
Web lecture series comprising 785 slides collaboratively created by 22 Semantic
Web researchers. As checked on May 2014, there were 3100 decks, 11000 deck
revisions, 22000 slides, 41000 slide revisions, 2000 questions and 850 active users on
SlideWiki. To evaluate the real-life usability of SlideWiki, we performed a usability
user study with 22 subjects. Subjects were drawn from the members of AKSW
research group at the university of Leipzig and MSc students at the Chemnitz
Technical University who took the course Business Information Systems. We used
the SUS scale to grade the usability of SlideWiki. The results of our survey showed
a mean usability score of 69 for SlideWiki which indicates a reasonable level of
usability (cf. Figure 7.12). In addition to quantitative results, we also collected a

16Other examples include authorSTREAM http://www.authorstream.com, SlideServe
http://www.slideserve.com, Scribd http://www.scribd.com and slideboom http://www.

slideboom.com
17http://sharepoint.microsoft.com

137

http://www.authorstream.com
http://www.slideserve.com
http://www.scribd.com
http://www.slideboom.com
http://www.slideboom.com
http://sharepoint.microsoft.com

7. WYSIWYM for Authoring of E-Learning Content

Figure 7.11.: An screenshot of the Semantic Web lecture series created collabora-
tively on SlideWiki.

number of user suggestions to further improve the SlideWiki platform. For instance
some users suggested providing autosave feature, supporting more import/export
formats, defining user groups etc.

The students were working with SlideWiki for several weeks, and we collected
the statistics for that period. The experiment was not obligatory but students
actively contributed by creating additional questions and fixing mistakes. During
that period, they created 252 new slide revisions which some of them were totally
new slides, others were improved versions of the original lecture slides. Originally
the whole course had 130 questions, and students changed 13 of them, fixing
the typos or adding additional options to multiple-choice questions. In total,
students performed 287 self-assessment tests. The majority of these used the
automatically and randomly created tests covering the whole course material.
After the experiment, based on the student grades at final exam, we could claim
that, more active SlideWiki users received better marks on the real examination.

138

7.7. Conclusion

Figure 7.12.: Result of SlideWiki usability evaluation using SUS questionnaire.

7.7. Conclusion

This chapter addressed the research question RQ5 (cf. Section 1.3) to apply
crowdsourcing and collaborative content authoring techniques to the process of
semantic content authoring. We presented the SlideWiki platform for authoring
of highly-structured e-learning content. SlideWiki as a crowdlearning platform
enables the collaborative authoring of presentations by utilizing the WikiApp data
model as well as WYSIWYM user interface model. The created presentations will
help to effectively shape rich e-learning materials by utilizing crowd feedback.

139

Chapter 8

WYSIWYM for Authoring of
Semantic Medical Prescriptions

“I always wanted to be somebody, but now I
realize I should have been more specific.”

— Lily Tomlin

In this chapter, we present how WYSIWYM model can be employed and cus-
tomized in specific domains to provide content interoperability. We will introduce
the new concept of Semantic Medical Prescriptions as an application of Semantic
Web technologies in e-prescription systems. Semantic prescriptions can automati-
cally handle the medication errors occurring in prescriptions and can increase the
awareness of the patients about the prescribed drugs and drug consumption in
general. We will also showcase Pharmer as our implemented WYSIWYM interface
to realize the creation of semantic prescriptions.

The remainder of this article is structured as follows: Section 8.1 and Section 8.2
provide a background on the basic concepts such as e-prescriptions and LODD. In
Section 8.3, we describe the Pharmer as a solution to effectively create semantic
prescriptions. Then we discuss the possible use cases of Pharmer in Section 8.4. To
better demonstrate the possible stakeholders of the Pharmer system, an example
scenario is drawn in Section 8.5. Section 8.6 reports the results of our usability
evaluation and finally Section 8.7 concludes the chapter.1

8.1. E-Prescriptions

As reported in MedicineNet [Melissa Conrad Stoppler, 2012], medication errors
are the most common type of medical errors in health care. Errors such as improper
dose of medicine, adverse drug interactions, food interactions, etc. often stem
from invalid prescriptions and unawareness of the patients. Medication-oriented
errors are usually the result of failures during the medication process [González
et al., 2011]. Electronic prescriptions, which are recently gaining attention in the
e-health domain, are one of the solutions proposed to solve these types of errors.
In an e-prescription system, prescriber electronically sends an accurate, error-free
prescription directly to a pharmacy from the point-of-care.

1The contents of this chapter have been published as [Khalili and Sedaghati, 2013a]. Some
parts of this chapter are written jointly by Bita Sedaghati (bita.sedaghati@uni-leipzig.de)
from the institute of pharmacy, university of Leipzig.

140

bita.sedaghati@uni-leipzig.de

8.2. Linked Open Drug Data (LODD)

During the recent years, the adoption of e-prescriptions has been spreading rela-
tively rapidly. In the US, the so called Electronic Prescribing Incentive Program is
a reporting program that uses a combination of incentive payments and payment
adjustments to encourage electronic prescribing by eligible professionals.2. As
recently published by [Galanter et al., 2013] hospitals’ use of computerized prescrip-
tions prevented 17 million drug errors in a single year in the United States. The
Canadian Medical Association (CMA) and the Canadian Pharmacists Association
(CPhA) have approved a joint statement on the future of e-prescribing that aims to
have all prescriptions for Canadians created, signed and transmitted electronically
by 2015. The Australian government removed commonwealth legislative barriers to
electronic prescribing started from 20073. A system called epSOS 4 which performs
the use of e-prescriptions all around Europe, is currently passing the extensive
practical testing phase.

However, one of the main challenges in current e-prescription systems is dealing
with the heterogeneity of available information sources. There exist already differ-
ent sources of information addressing different aspects of pharmaceutical research.
Information about chemical, pharmacological and pharmaceutical drug data, clini-
cal trials, approved prescription drugs, drugs activity against drug targets such
as proteins, gene-disease-drug associations, adverse effects of marketed drugs, etc.
are some examples of these diverse information. Managing these dynamic pieces
of information within current e-prescription systems without blurring the border
of the existing pharmaceutical information islands is a cumbersome task. On the
other hand, Linked Open Data as an effort to interlink and integrate these isolated
sources of information is obtaining more attention in the domain of pharmaceutical,
medical and life sciences.

Combining the best practices from Linked Open Data together with e-prescription
systems can provide an opportunity for patients, researchers as well as practitioners
to collaborate together in a synergetic way. A consequence of introducing LD in
health care sector is that it significantly changes the daily duties of the employees
of the health care sector. Therefore the most challenging aspect will not be the
technology but rather changing the mind-set of the employees and the training of
the new technology[Puustjärvi and Puustjärvi, 2006].

8.2. Linked Open Drug Data (LODD)

In computing, Linked Data (LD) describes a method of publishing structured
data so that it can be interlinked and become more useful. It builds upon standard
Web technologies such as HTTP and URIs, but rather than using them to serve
Web pages for human readers, it extends them to share information in a way that
can be read automatically by computers. This enables data from different sources

2Electronic Prescribing (eRx) Incentive Program http://www.cms.gov/erxincentive
3http://www.medicareaustralia.gov.au/
4epSOS : the European eHealth Project http://www.epsos.eu/

141

http://www.cms.gov/erxincentive
http://www.medicareaustralia.gov.au/
http://www.epsos.eu/

8. WYSIWYM for Authoring of Semantic Medical Prescriptions

Figure 8.1.: Available datasets related to life sciences and pharmaceutical research.

to be connected and queried [Bizer et al., 2009]. Tim Berners-Lee, the inventor of
the Web and LD initiator, suggested a 5 star deployment scheme for Linked Open
Data (LOD): 1) make your stuff available on the Web (whatever format) under an
open license, 2) make it available as structured data (e.g., Excel instead of image
scan of a table), 3) use non-proprietary formats (e.g., CSV instead of Excel), 4)
use URIs to identify things, so that people can point at your stuff, 5) link your
data to other data to provide context.

Particularly in the areas of health care and life sciences with the wealth of
available data, large scale integration projects like Bio2RDF 5, Chem2Bio2RDF 6,
and the W3C HCLS’s (Health Care and Life Sciences) Linked Open Drug Data

5http://bio2rdf.org/
6Semantic Web in Systems Chemical Biology http://chem2bio2rdf.wikispaces.com/

142

http://bio2rdf.org/
http://chem2bio2rdf.wikispaces.com/

8.2. Linked Open Drug Data (LODD)

(LODD)[Samwald et al., 2011a] have not only significantly contributed to the
development of the Linked Open Data effort, but have also made social and
technical contributions towards data integration, knowledge management, and
knowledge discovery.

There are already many interesting information on pharmaceutical research
available on the Web. The sources of data range from drugs general information,
interactions and impacts of the drugs on gene expression, through to the results of
clinical trials. LODD has surveyed publicly available data about drugs, created LD
representations of the data sets, and identified interesting scientific and business
questions that can be answered once the data sets are connected (cf. Figure 8.1).

LODD Applications in Medical Domain. There exists few approaches that
address the medical and pharmaceutical applications using LODD. TripleMap
(http://www.triplemap.com) is a project connecting widespread distribution
of journal articles, patents and numerous databases in pharmaceutics research.
TripleMap as a Web-based application provides a dynamic visual interface to
integrate RDF datasets such as the LODD. Showing an unexpected associations
between entities related to researcher’s interest is main advantage of TripleMap
inspired by the broad interconnected data available in the LODD data sets. The
goal of the TripleMap project is to deliver and sustain an ‘open pharmacological
space’ by using and enhancing the state-of-the-art Semantic Web standards and
technologies [Samwald et al., 2011b].

Another related project is the Open Pharmacological Space (OPS), Open
PHACTS (Pharmacological Concept Triple Store http://www.openphacts.org)
project under the European Innovative Medicines Initiative (IMI http://www.imi.
europa.eu/). The goal of this project is integration of chemical and biological
data using LD standards to support drug discovery [Williams et al., 2012].

Linked Cancer Genome Atlas Database [Saleem et al., 2013] as another LD
project aims to create an atlas of genetic mutations responsible for cancer. The
project provides an infrastructure for making the cancer related data publicly
accessible and to enable cancer researchers anywhere around the world to make
and validate important discoveries.

Although these projects address the backend side of creating LODD applications,
there has been a clear lack of applications with user-friendly, efficient and effective
interfaces to make LD resources accessible to end-users outside the biomedical
community. One of the use cases of LODD datasets addressed in this chapter is
authoring of Semantic Prescriptions which are prescriptions enriched by LOD.

143

http://www.triplemap.com
http://www.openphacts.org
http://www.imi.europa.eu/
http://www.imi.europa.eu/

8. WYSIWYM for Authoring of Semantic Medical Prescriptions

date

genericName

P
re

s
c

rip
tio

n

Instruction

Drug

Ontologies

 Prescription Content

descriptionabsorption

affectedOrganism

biotransformation

halfLife

indication

mechanismOfAction

absorption

pharmacology

toxicity

dosageForm

quantity
comments

dosage

...
...

...

Bottom-Up
Enrichment

Figure 8.2.: Bottom-up semantic enrichment of prescriptions.

8.3. Semantic Authoring of Medical Prescriptions
using Pharmer

Semantic Medical Prescriptions are intelligent e-prescription documents enriched
by dynamic drug-related meta-data thereby know about their content and the
possible interactions. As depicted in Figure 8.2, semantic prescriptions are created
based on a bottom-up process (cf. Section 3.3.1) in which normal e-prescriptions
(unstructured or semi-structured with lower level of expressiveness) are enriched
with semantic metadata coming from a set of predefined ontologies (with upper
level of expressiveness).

In order to showcase the applicability of semantic prescriptions we implemented
an application called Pharmer. The Pharmer implementation is open-source and
available for download together with an explanatory video and online demo at http:
//code.google.com/p/pharmer/. Pharmer provides a platform for semantically
annotation of conventional e-prescriptions.

We use Schema.org MedicalTherapy and Drug vocabularies as our annotation
ontologies and utilize the existing pharmaceutical linked datasets such as DBpedia,
DrugBank7, DailyMed8 and RxNorm9 as our domain ontology.

7A bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical,
pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence,
structure, and pathway) available at http://www.drugbank.ca

8Information about marketed drugs available at http://dailymed.nlm.nih.gov
9A normalized naming system for generic and branded drugs available at http://www.nlm.

nih.gov/research/umls/rxnorm/

144

http://code.google.com/p/pharmer/
http://code.google.com/p/pharmer/
Schema.org
http://www.drugbank.ca
http://dailymed.nlm.nih.gov
http://www.nlm.nih.gov/research/umls/rxnorm/
http://www.nlm.nih.gov/research/umls/rxnorm/

8.3. Semantic Authoring of Medical Prescriptions using Pharmer

Document Layer

Semantic Layer

Application Layer

Drug

Detection

Drug Information

Collector

AnnotatorAuthoring UI

Visualizer Fact Extractor Interaction Finder

prescription

Semantic prescription

- Instructions
- General
 Information

NLP Services

DBpedia

Spotlight

BioPortal

Annotator

Linked Open Drug Data

Figure 8.3.: Architecture of the Pharmer system.

8.3.1. Architecture

The Pharmer system architecture is depicted in Figure 8.3 and consists of three
layers:

Document Layer This layer includes the traditional e-prescription document
plus two components as Drug Detection and Drug Information Collector. Drug
detection component performs the natural language processing of the e-prescription
document to detect the terms referring to a drug in the prescription. The component
uses DBpedia Spotlight 10 and BioPortal annotator 11 NLP services to parse and
analyze the text looking for known drugs. BioPortal annotator is an ontology-based
Web service that annotates public datasets with biomedical ontology concepts
based on their textual metadata.

Automatic drug detection component is configurable so that users can easily
add other existing NLP services for drug detection. When user is writing the
prescription, this component asynchronously performs the drug recognition and
adds the related annotations as real-time semantic tagging.

Another component in this layer is drug information collector which grabs all
the information regarding a specific drug from LOD. To pursue this, it utilizes
datasets such as DrugBank, DailyMed and RxNorm by sending federated SPARQL
queries.

10http://spotlight.dbpedia.org/
11http://bioportal.bioontology.org/annotator

145

http://spotlight.dbpedia.org/
http://bioportal.bioontology.org/annotator

8. WYSIWYM for Authoring of Semantic Medical Prescriptions

Figure 8.4.: Pharmer WYSIWYM implementation (V1 – highlighting of drugs
through framing, V9 – additional information about a drug in a callout,
T1/T2 combined form and inline editing of electronic prescriptions).

Semantic Layer There are two main components in this layer namely Annotator
and Authoring UI. The annotator component handles the automatic annotation and
embeds the general information of the drugs as meta-data into the e-prescription.
Annotator adopts the RDFa format. The authoring UI component provides users
with a set of input forms to manually embed the meta-data related to prescription
instructions into the prescription document.

Application Layer This layer provides a set of applications on top of the gener-
ated semantic prescriptions. Interaction Finder checks the possible interactions
between the prescribed drugs and warn the prescriber about them. Visualizer is
responsible for graphically representing the embedded semantics of a prescription
(e.g. as depicted in Figure 8.6). The Fact Extractor generates the RDF/Turtle
representation of the semantic prescriptions.

8.3.2. Features

The main features of Pharmer can be summarized as:

• WYSIWYM User Interface. As shown in Figure 8.4, Pharmer employs the
WYSIWYM concept described in Chapter 4. In Pharmer, users are able to
directly manipulate the conventional e-prescriptions in order to enrich them

146

8.4. Possible Use Cases of Pharmer

with semantics. The generated annotations can be viewed by different sets of
user interfaces with are configurable by users. For example, users can select
specific border/background colors to distinguish the annotated drugs in a
prescription.

• Providing Different Semantic Views. Semantic views allow the generation
of different views on the same metadata schema and aggregations of the
knowledge base based on the roles, personal preferences, and local policies
of the intended users. Pharmer suggests two types of views: generic and
domain specific views. Generic views provide visual representations of drug
information (e.g., as information view depicted in Figure 8.5 or graph view in
Figure 8.6). Domain-specific views address the requirements of a particular
domain user (e.g., a researcher need specific views for visualizing the atomic
structure of chemical compounds).

• Real-time Drug Tagging. Real-time tagging means creating drug annotations
while the user is typing. This will significantly increase the annotation
speed [Heese et al., 2010]. Users are not distracted since they do not have to
interrupt their current authoring task. Pharmer has a client-side component
which interacts with the server asynchronously to make real-time tagging
possible.

• Drug Suggestion. When searching for a drug, Pharmer suggests the similar
drugs by taking into account the history of search terms and by sending
SPARQL queries to the relevant datasets.

• Automatic Drug Annotation. Automatic annotation means the provision
of facilities for automatic mark-up of prescriptions. The automatic process
of annotating in Pharmer is composed basically of finding drug terms in
prescription using an NLP service, mapping them against an ontology (i.e.,
DBpedia), and disambiguating common terms.

8.4. Possible Use Cases of Pharmer

8.4.1. A Ubiquitous Computing Platform for Semantic
E-Prescribing

Mobile and ubiquitous computing devices are increasingly present and prevalent
in the health contexts. This trend brings a number of possibilities of mobile health
(m-health) to address critical aspects of health care and health system needs, by

147

8. WYSIWYM for Authoring of Semantic Medical Prescriptions

Figure 8.5.: Screenshot of the Pharmer application (top-left: general view, top-
right: drug information view, bottom-left: prescription authoring view,
bottom-right: drug interaction-finder results).

virtue of these devices’ ubiquity, simplicity, and cost-efficiency [Petrucka et al.,
2013]. In particular, in the process of semantic e-prescribing, having a mobile
application will facilitate the creation of semantic medical prescriptions using any
device and in any location.

Pharmer mobile application as shown in Figure 8.712 provides a mobile user inter-
face for authoring of semantic prescriptions as well as accessing multi-dimensional
data on medical prescriptions. Current ubiquitous devices are programmable
and come with a growing set of facilities including multi-touch screens and cheap
powerful embedded sensors, such as an accelerometer, digital compass, gyroscope,
GPS, microphone, camera and other type of sensors. Utilizing these rich set of
facilities in the context of medical prescriptions will enrich the patient medical
prescription with sensor data thereby improves the quality of e-health services.
For example, the location of user and some indicators like blood pressure or hear
rate can be received from sensors by which Pharmer can specify the suitable drugs

12Available at http://bitili.com/pharmer/mobile

148

http://bitili.com/pharmer/mobile

8.4. Possible Use Cases of Pharmer

Figure 8.6.: Graph view in Pharmer.

located in pharmacies close to the user.

8.4.2. A Professional Social Network for Health-care Service
Providers

Pharmer as a prescribing tool can be incorporated in a health care social
network. Such a network composed of health care professionals and patients who
collaboratively write, correct and modify prescriptions in a semantically enriched
environment. This social health care network facilitates relations between patients
and health care professionals in order to improve Shared Decision Making (SDM).
The traditional model of medical decision-making, in which doctors make decisions
on treatment has no longer used in updated health care. The role of the patient,
instead, in the consultation has been highlighted, mainly through introducing
‘patient-centered’ strategies. Therefore, nowadays the models promoting patients
active involvement in the decision-making procedure becoming developed.

A model introduced by Charles et al. [Charles et al., 1997] defines shared decision
making only under the following four key characteristics. These keys are:

• both the patient and the doctor are involved.

• both parties share information.

• both parties take steps to build a consensus about the preferred treatment.

• an agreement is reached on the treatment to implement.

149

8. WYSIWYM for Authoring of Semantic Medical Prescriptions

Figure 8.7.: Screenshot of Pharmer mobile application.

Pharmer facilitates the process of SDM through the connection amongst patient
and physician on one hand and pharmacist on the other hand.

Access to eLODD enables Pharmer to not only get linked to e-prescribing sys-
tems but also to further assist physicians in diagnosis and treatment. Pharmer with
direct connection to up-to-date information enables physicians to reconfirm their
diagnosis and help them in finding proper treatment approaches. Physician, after
general examination can enter the observed symptoms in Pharmer network and
there, with the wealth of data available, Pharmer can assist in diagnosis followed
by therapies.

8.5. Pharmer Stakeholders: Example Scenario

As depicted in Figure 8.8, Pharmer approach is very versatile and can be applied
in a vast number of use cases by different stakeholders. The arrows in the figure
can be summarized as the following:

1. The physician diagnoses the disease and writes the corresponding seman-
tic prescription using the Pharmer, where patient’s medication history is
available.

150

8.5. Pharmer Stakeholders: Example Scenario

Patient

Pharmacist

Researcher

6

4

3

1 5

Physician

Drug company2

Insurance company

Figure 8.8.: Pharmer ecosystem.

2. The patient accesses to drug information, food interactions and adverse drug
reactions via Pharmer.

3. The pharmacist verifies the prescription and considers alternative options
suggested by Pharmer.

4. Pharma companies utilize the Pharmer data store in order to balance their
production and distribution according to the market taste and demand.

5. The Researchers easily access to the abundant data source and prescription
statistical data.

6. Pharmer informs insurance companies to perform fair coverage plans accord-
ing to covered drugs and patient’s medication history.

All the above stakeholders utilize Linked Open Data as their integrated information
source.

As a scenario, a 63 year old man with the history of MI (Myocardial Infarction)
and type 2 diabetes visits a heart and coronary specialist complaining about
frequent headaches and heavy head feeling. The specialist, after general inspection
and monitoring vital signs, asks for a blood test. He then considers symptoms
including high blood pressure (sys/dias:158/95 mmHg) and high Fasting Blood

151

8. WYSIWYM for Authoring of Semantic Medical Prescriptions

Sugar (150 mg/dl). He diagnoses high blood pressure and severe type 2 diabetes.
Thereby, The patient profile is defined in Pharmer by patient’s information besides
diagnosis. “no weight loss” is mentioned as a preference in the patient’s profile.
Regardless of the patient’s preferences, the physician would prescribe Metformin

as a drug of choice. However, since the major side effect of Metformin is weight
loss, the physician replaces Metformin with Rosiglitazone.

Considering the medication that the patient took before (Glibenclamide only),
The specialist dispenses a new semantic prescription by entering the following
drugs:

• Rosiglitazone 4 mg Oral Tablet once daily

• Glibenclamide 5 mg Oral Tablet bid

• Atenolol 50 mg Oral Tablet once daily

He then checks for the possible drug interactions by clicking the attributed button
in the Pharmer software. As the Pharmer is connected to LODD, it is capable
of recognizing the most recent updated drug interactions (available at Drugbank
dataset). He finds out that Sulfunyl Urea class drugs (here Glibenclamide) are
not compatible to be coadministrated with beta-blockers (here Atenolol). So,
he needs to replace it with another drug. Using the Pharmer and its connection
to Linked Open Data, the physician can find the possible alternatives. Then he
decides to choose Captopril as replacement.

The semantic prescription is then sent to the patient’s pharmacy of choice.
There, the pharmacist is able to review the semantic prescription and comments on
that directly in the system so that the physician is also aware of the corresponding
changes. The pharmacist comments may cause minor or major modifications in
the semantic prescription. For instance, using the Pharmer, she is able to check
the appropriate dose of each medicine or suggest cheaper alternatives (if possible).
In this case, as the Rosiglitazone elevates cardiovascular risks, the pharmacist
suggests Rosiglitazone to be replaced by Pioglitazone. This change happens
as a realization of the shared decision making between physician, pharmacist and
patient. Thereafter, the patient who was referred to the pharmacy takes the
prescribed drugs.

Before he starts taking the tablets, he enters in Pharmer system with his ID as
patient. There, he is able to observe drug information embedded in the error free
semantic prescription besides the preferred time and drug intake instructions. He is
also informed about the possible food interactions. The patient’s profile completes
as he visits physicians or ask for refills. Furthermore, he is followed up by the
physician and the pharmacist via the Pharmer. After 2 months, the patient visits
another specialist for his recurrent symptoms of diabetes. The specialist via the
Pharmer accesses to the patient’s medical profile and increases the anti-diabetic
drug dose.

152

8.6. Usability Evaluation

A researcher in an academy research institution investigates Captopril (as an
Angiotansion II antagonist) effect on preventing diabetes recurrence. Having the
data from the aforementioned patient follow up along with other similar patients
allows investigator to lead her goal. In this case, for example, the Captopril along
with anti-diabetic drugs led to diabetes recurrence. Observing all the corresponding
patient profiles will either confirm or reject the research assumption.

A Pharma company manager requires to determine the compliance rate of
Captopril in the market in order to balance the production based on market
demand. Applying the Pharmer allows him to simply access to these data and
decide how to go on with this product. He is also able to collect the evidence which
may prevent further dispense of Captopril by physicians or consumption among
patients. Pharmer allows insurance companies to customize and individualize their
services based on patient’s medical records. Recruiting Pharmer that contains
information on insured drugs, the physician can choose the drugs accordingly. In
the scenario, insurance company checks the dispensed medication with the disease
and patient’s insurance status therefore decides to refund the patient.

8.6. Usability Evaluation

In order to determine whether we succeeded to facilitate the creation of semantic
prescriptions using Pharmer, we performed a usability user study with 13 subjects.
Subjects were drawn from 3 physicians, 4 pharmacist, 3 pharmaceutical researchers
and 3 students. We first showed them a tutorial video of using different features
of Pharmer13 then asked each one to create a prescription with Pharmer. After
finishing the task, we asked the participants to fill out a questionnaire, which
consisted of two parts: feature usage questions and usability experience questions.

We used the SUS scale [Lewis and Sauro, 2009] to grade the usability of Pharmer.
SUS is a standardized, simple, ten-item Likert scale-based questionnaire giving
a global view The results of our survey (cf. Figure 8.9) showed a mean usability
score of 75 for Pharmer which indicates a good level of usability. Participants
particularly liked the integration of functionality and the ease of learning and
use. The confidence in using the system was slightly lower, which we attribute
to the short learning phase and diverse functionality. Of course, this is a very
simplified view on usability and we expect even better results could be achieved
by putting more effort into the Pharmer development. However, our goal was to
demonstrate that Pharmer implementations with good usability characteristics
could be created with relatively limited effort. In addition to quantitative results,
we also collected a number of user suggestions. For instance some users suggested
providing a print-friendly document with all the patient’s desired information.

13Available at http://youtu.be/eNbbqO-zLQk

153

http://youtu.be/eNbbqO-zLQk

8. WYSIWYM for Authoring of Semantic Medical Prescriptions

Figure 8.9.: Usability evaluation results for Pharmer.

8.7. Conclusion

This chapter addressed the research question RQ6 (cf. Section 1.3) to apply
semantic content authoring to a domain-specific use case (i.e. e-prescribing) for
achieving content interoperability. Providing a consistent connection between
patients, physicians, pharmacists, pharmaceutical researchers and drug companies
is a crucial step towards enhancing the quality of knowledge management and
thereby e-health services in the pharmaceutical domain. With Pharmer, we
presented in this chapter another implementation of the WYSIWYM interface
model for realizing Semantic Prescriptions as intelligent medical prescriptions to
improve the integration and interoperability of e-prescribing systems with other
e-health services. Semantic prescriptions include the important meta-data about
the content of a prescription, which will increase the awareness of their consumers.

154

Chapter 9

Conclusions and Future Work

“In the end, people are persuaded not by what
we say, but by what they understand.”
— John C. Maxwell

This chapter provides an overview on the answers to the research questions
behind this thesis and summarizes the main results of this work. It then discusses
the future directions in which we intend to move further to extend and broaden
the research conducted in the contributed areas.

9.1. Answers to Research Questions

In this section we revisit the research questions discussed in Section 1.3 and
provide a summary of the answers and contributions:

RQ1. What are existing approaches for user-friendly semantic content
authoring?

Based on the starting point of the authoring process which can be ontologies
(with upper level of expressiveness) or unstructured content (with lower level of
expressiveness), we can classify the existing approaches for SCA into categories
Top-Down and Bottom-Up. The bottom-up approaches usually known as semantic
annotation or semantic markup techniques aim to annotate existing documents
using a set of predefined ontologies. The top-down approaches usually called
ontology population techniques aim to create semantic content based on a set of
initial ontologies, which are extended during the population process. The tools
which employ the bottom-approach are more appropriate for end users with no or
limited knowledge of the domain on which the annotations or semantic structures
are applied. Tools that adopt the top-down approach usually need users to have
knowledge of the corresponding domain as well as ontology concepts.

A predefined set of quality attributes comprising standard UI types and features
can be employed to evaluate the strengths and weaknesses of existing SCA systems.
Quality attributes address different aspects of designing and developing user-friendly
SCA systems: Essential, foundational quality attributes for an SCA system are,
in particular, usability, generalizability, customizability and evolvability. Support
of collaboration, interoperability and scalability are quality attributes required
when an SCA system is employed in a community-driven environment with large
amount of users, systems and interactions. Automation and proactivity are quality

155

9. Conclusions and Future Work

attributes which facilitate usability of SCA systems especially for non-skilled users.
Portability and accessibility are, as our survey indicated, not well addressed by the
SCA-related literature so far and demand more investigations.

RQ2. How can we bind user interface elements to semantic representation
data models?

In order to facilitate the creation of semantically-enriched content, we need to
provide suitable UIs which are compatible with the elements of our underlying
semantic representation data model. In addition to an in-depth analysis of the
elements of existing semantic representation models such as tree-based, graph-based
and hyper-graph-based models, we performed an extensive review of the existing UI
elements and techniques for visualization, exploration and authoring of text, images
and videos. Finding the possible bindings between the semantic representation data
models and UI techniques for visualization, exploration and authoring of content
led us to the development of a novel interface model called WYSIWYM (What
You See Is What You Mean). WYSIWYM aims to standardize interfaces for SCA
systems. In order to facilitate, enhance and customize the WYSIWYM model, a set
of helper components, which implement cross-cutting aspects such as automation,
recommendation and collaboration are integrated into the WYSIWYM model.

RQ3. How can we integrate semantic content authoring features into the
current authoring tools on the Social Web?

Integrating SCA features into the current content authoring process on the
Social Web, facilitates the promotion of structured content on the Web to a great
extent. WYSIWYG (What You See Is What You Get) text authoring is meanwhile
ubiquitous on the Web and part of most content creation and management workfows
such as CMSs, Weblogs, Wikis, product data management systems and online shops.
In this thesis we introduced RDFaCE approach as a transition from WYSIWYG
to WYSIWYM. The rationale is to provide an environment to the user, which
she is sufficiently familiar with, but at the same time enables her to understand,
access and work with semantically-enriched content. We implemented RDFaCE as
a plugin for existing WYSIWYG implementations which could be installed and
employed on the Social Web without much additional effort.

RQ4. How can we exploit semantically-enriched content for content
analysis?

Semantically-enriched content can be exploited to deal with the current analytical
information imbalance (cf. Section 6.1). In this thesis, we introduced conTEXT as
a Mashup platform for text analytics. conTEXT combines services for NLP (e.g.
named entity recognition and relation extraction), sentiment analysis, visualization,
exploration and feedback to exploit semantically-enriched content for text analysis.
conTEXT employs the WYSIWYM interface model to enable ordinary Web users

156

9.2. Summary of the Results

to perform sophisticated NLP tasks. Instant benefits provided by different analytics
views in conTEXT act as an incentive for users to adopt semantic annotations and
to take NLP feedback into account. Users receive more precise analytics results as
they contribute to the refinement of automatically annotated content.

RQ5. How can we apply crowdsourcing & collaborative content authoring
techniques to the process of semantic content authoring?

One of the main drivers to increase the amount of structured content on the
Web is harnessing the power of crowds contributing to the Social Web on a daily
basis. Addressing the crowdsourcing and collaboration aspects of SCA, requires
new extensions to our proposed WYSIWYM interface model. By introducing the
WikiApp data model in this thesis we aimed to provide a refinement of traditional
entity-relationship data model which considers users and content revisions as
its first class citizen. Based on the WikiApp model, we developed a platform
called SlideWiki for collaborative authoring of highly-structured e-learning content.
SlideWiki implements our proposed WYSIWYM interface together with collabo-
ration helper components for authoring of semi-structured content in an implicit
and user-friendly manner.

RQ6. How can we apply semantic content authoring to a domain-specific
use case for achieving content interoperability?

In this thesis, we introduced Pharmer as a domain-specific implementation of
the WYSIWYM model. Pharmer enables physicians to author semantic medical
prescriptions as intelligent prescriptions which know about their own content. With
Pharmer we investigated how semantically-enriched content can be applied to
facilitate content interoperability in the domain of health-care services. Pharmer
utilizes real-time drug tagging for user-friendly creation of structured medical
prescriptions and to enable shared decision-making among physicians, pharmacists,
researchers, Pharma and insurance companies.

9.2. Summary of the Results

Upon completion of this thesis, the main research question behind this work,
namely “How can we enable user-friendly manual and semi-automatic creation of
rich semantic content?” needs to be answered. As shown in Figure 9.1, in order
to facilitate authoring of semantically-enriched documents, we need to extend the
existing authoring approaches with appropriate user interfaces for semantic content
authoring. This extension should be carried out with minimal effort so that user
is not distracted from the normal process of content authoring. In this thesis,
we proposed a semantics-based user interface model which provides a binding
between existing semantic representation data models and existing user interfaces
for visualization, exploration and authoring of content. The proposed model is

157

9. Conclusions and Future Work

Community of users Semantically-enriched

documents

Binding

Semantic representation

models
UI elements & techniques

Helper components

Anlaytics

WYSIWYM

use author

Figure 9.1.: User-friendy manual & semi-automatic creation of rich semantic
content.

called WYSIWYM (What You See Is What You Mean) and aims to standardize
semantic authoring user interfaces. WYSIWYM model offers a set of helper
components to deal with the cross-cutting aspect such as automation, proactivity,
accessibility and personalization. In order to deal with the community of users
and content revisions, we enriched WYSIWYM with an appropriate data model
called WikiApp which supports collaboration and crowdsourcing. Furthermore,
to incentivize users to adopt semantic content authoring, different views for text
analytics are provided to users.

Revisiting our user scenario in Section 1.1, Alice can exploit semantically-enriched
job posts (either by annotating unstructured job posts or by authoring structured
job posts from the scratch) to create different UIs for content exploration and
visualization. For example, she will see a taxonomy of all the Data Science related
skills together with their mentions in IT jobs posted on LinkedIn or other job
posting Websites. She can then easily extract the most demanded Data Science
skills from the collected IT jobs and can publish them as structured content on
their online magazine to be reusable by other Web users too.

9.3. Impact

The main goal of this research was to facilitate and promote semantic content
authoring among Web end-users. To achieve this goal, we developed and released
several open-source tools and platforms dealing with this task in both general and
domain-specific use cases (cf. Appendix A). Most of these tools have been already

158

9.3. Impact

actively used by users on the Web. With these tools, we envision the following
impacts:

Alleviating the Semantic Web’s chicken-and-egg problem. Recently we could
observe a significant increase of the amount of structured data publishing on
the Web. However, this increase can be attributed primarily to article metadata
being made available and already to a much lesser extend to just a few entity
types (people, organizations, products) being prevalent [Bizer et al., 2013]. As a
consequence, we still face the chicken-and-egg problem to truly realize the vision
of a Web, where large parts of the information are available in structured formats
and semantically annotated. Before no substantial amount of content is available
in semantic representations, search engines will not pick up this information and
without better search capabilities publishers are not inclined to make additional
effort to provide semantic annotations for their content. The latter is particularly
true for unstructured and semi-structured content, which is much more difficult to
annotate than structured content from relational databases (where merely some
templates have to be adopted in order to provide e.g. RDFa).

RDFaCE and conTEXT can help to overcome this problem, since they pro-
vide instant benefits (i.e. SEO and text analytics views) to users for creating
comprehensive semantic annotations.

Democratizing the NLP usage. With conTEXT, natural language processing
technology is made more accessible, so that ordinary users can use sophisticated
text analytics with just a few clicks. RDFaCE and Pharmer allow ordinary users
to exploit NLP by one click (or even in real-time without any click while user
is writing) for automatic content annotation. This was achieved by abstracting
from a particular technology (e.g. by using the NIF format) and by supporting
sophisticated content visualizations and exploration employing the WYSIWYM
model and the data-driven document metaphor. As a result, ordinary users
can observe the power of NLP and semantic technologies with minimal effort.
By directly showing the effect of semantic annotations and demonstrating the
benefits for improved navigation, exploration and search, users will gain a better
understanding of recent technology advances.

Harnessing the power of feedback loops. Thomas Goetz states in his influential
WIRED Magazin article [Goetz, 2011]: ‘Provide people with information about
their actions in real time, then give them a chance to change those actions, pushing
them toward better behaviors.’ With RDFaCE and conTEXT, we give users
direct feedback on what information can be extracted from their works using
NLP services. At the same time we want to incorporate their feedback and
revisions of the automatic semantic annotations back in the NLP processing loop.
Incorporating user feedback was so far not much in the focus of the NLP community.
With RDFaCE and conTEXT, we aim to contribute to changing this. We argue,

159

9. Conclusions and Future Work

that NLP technology achieving, for example, 90% precision, recall or f-measure,
might not fulfill the requirements of a number of potential use cases. When we
can increase the quality of the NLP through user feedback, we might be able to
substantially extend the range of potential NLP applications. The user feedback
here serves two purposes: One the one hand, it directly increases the quality of the
semantic annotation. On the other hand, it can serve as input for active learning
techniques, which can further boost precision and recall of the semantic annotation.

Enabling the collaborative creation of structured multilingual educational
content. The creation of high-quality educational content is a time and resource
consuming task. The task requires even more resources if there is a need to offer
the content in different languages. With SlideWiki, we propose to exploit the
power of crowd to author semantically structured educational content available
in a number of different languages. By employing the WYSIWYM model and by
semantic structuring of content, we split the content into reusable elements in such
a way, that each of them fully covers an individual piece of knowledge thereby
enabling educational content reuse and re-purposing on the Web.

9.4. Limitations and Future Directions

The work presented in this thesis included both research and engineering parts.
In the following, we describe the limitations and future work with regards to the
main contributions of this thesis:

UIs for semantic content authoring. While there are many benefits of system-
atic reviews, they also bear some limitations and validity threats originating from
human errors. The main threats to validity of our systematic review are twofold:
correct and thorough selection of the studies to be included as well as accurate
and exhaustive selection of quality attributes together with their corresponding
UI features. With the increasing number of works in the area of semantic content
authoring we can not guarantee to have captured all the material in this area.
The scope of our review is restricted to the scientific domain. Therefore, some
tools or approaches employed in the industry might have not been included in our
primary studies. Furthermore, since the review process was mainly performed by
one researcher a bias is possible. In order to mitigate a potential subjective bias,
the review protocol and results were checked and validated by a senior researcher
and other colleagues experienced in the context of Semantic Web.

As future work, we envision strategies to semi-automatically improve the re-
alization of the quality attributes discussed in Section 3.9, for example, using
active machine learning for better integration with approaches delivering auto-
matic suggestions. Also extending the support for integration of multi-media and
multi-modal semantic annotation (e.g. of images and multimedia content) is a
promising research direction. Addressing open research and technology challenges

160

9.4. Limitations and Future Directions

such as accessibility, handling complexity in UIs, formal and systematic methods
for user interface evaluation and UIs for ubiquitous devices are other interesting
areas for future research.

WYSIWYM model. With regards to the limitations of our proposed WYSIWYM
model, though we attempted the bindings to be fairly complete, new UI elements
might be developed or additional data models (or variations of the ones considered)
might appear. In this case, the bindings should be updated.

As future work, we envision to adopt a model-driven approach to enable auto-
matic implementation of WYSIWYM interfaces by user-defined preferences. This
will help to reuse, re-purpose and choreograph WYSIWYM UI elements to accom-
modate the needs of dynamically evolving information structures and ubiquitous
interfaces. We also aim to bootstrap an ecosystem of WYSIWYM instances and
UI elements to support structure encoded in different modalities, such as images
and videos. Creating live and context-sensitive WYSIWYM interfaces which can
be generated on-the-fly based on the ranking of available UI elements is another
promising research venue.

Integrating semantic content authoring into the current content authoring
tools. Integrating SCA systems into other applications like speech recognition
and question-answering systems for improving the accuracy and quality of results is
an important area of future work in this context. At the moment, intelligent mobile
assistants (e.g. Siri1 for the iPhone) only allow delegation of certain programmed
tasks (e.g. making restaurant reservations, getting movie tickets, etc.) by invoking
certain predefined web services. Employing semantically enriched content in the
UI of mobile personal agents will extend their capability to inquiry the open Web
of Data thereby achieving more efficient and effective results.

Exploiting semantically-enriched content for content analysis and instant user
gratification. In future, we plan to extend work on conTEXT along several
directions:

• Enhancing the NLP feedback. We aim to investigate, how user feedback can
be used across different corpora. We consider the harnessing of user feedback
by NLP services an area with great potential to attain further boosts in
annotation quality. On a related angle, we plan to integrate revisioning func-
tionality, where users can manipulate complete sets of semantic annotations
instead of just individual ones. In that regard, we envision that conTEXT
can assume a similar position for text corpora as have data cleansing tools
such as OpenRefine for structure data.

• Creating a flexible end-user NLP ecosystem. At the moment, conTEXT
platform relies mainly on DBpedia Knowledge Base (KB) to extract the

1http://www.siri.com

161

http://www.siri.com

9. Conclusions and Future Work

Named Entities and to provide different views for text analytics. Nevertheless,
there are many use cases that require to change or extend the underlying
KB for providing more elaborated and domain-specific views on content.
Enabling users with mechanisms to modify the underlying KB with minimal
efforts will bring a high impact to the conTEXT end-user NLP ecosystem.
In the envisioned ecosystem, users can either create their own KB or reuse
existing KBs provided by knowledge engineers and domain experts. Once
the underlying KB changes, all the other components (e.g. NER tools or
analytics views) must adapt to this change. Also, in this direction we plan
to provide conTEXT as a composite Web service, where each component
of the system such as input processors, NLP services and analytics views
can be created, shared and reused by Web users in a modular way. In this
dynamic and flexible ecosystem, a user’s content is continuously ingested
and processed, the user is informed about updates and thus the semantic
representations of the content evolve along with the content itself.

Applying crowdsourcing & collaborative authoring techniques to the process
of semantic content authoring. Our first direction for future work in this
context is to implement a completely SCORM-compliant LCMS and authoring
tool, based on the SlideWiki. This will allow us to exchange the content with
other SCORM-compliant LCMSs. Also, in a real e-learning scenario, learners
come from different environments, have different ages and educational backgrounds.
These heterogeneities in user profiles are crucial to be addressed when enhancing
the crowdlearning concept. New approaches should provide the possibility to
personalize the learning process. Thus, our second direction is providing the
personalized content based on initial user assessments. The third direction for
the future work is to support the annotation of learning objects using standard
metadata schemes. We aim to implement the LRMI 2 metadata schemes to facilitate
end-user search and discovery of educational resources.

Exploiting semantically-enriched content for content interoperability in do-
main-specific use cases. Regarding future work, we envision to extend the
Pharmer application towards different modalities, such that the annotation of
images and other medical objects is supported. Furthermore, we aim to integrate
the other existing linked open datasets (e.g. related to publications, laboratories
or insurance documents) into the Pharmer to extend its stakeholders.

2Learning Resource Metadata Initiative: www.lrmi.net/

162

www.lrmi.net/

Appendix A

Software Release History

The following software releases were made during the thesis:

• RDFaCE (https://bitbucket.org/ali1k/rdface & http://wordpress.

org/plugins/rdface/)

– 0.4 - released 2014-5-11 - bug fixes, compatibility with TinyMCE 4.0
and Wordpress 3.9

– 0.3 - released 2013-4-15 - schema.org edition

– 0.2 - released 2012-3-6 - rdface-lite with support for rNews vocabulary

– 0.1 - released 2011-7-8 - initial version

• conTEXT (https://github.com/AKSW/context)

– 0.3 - released 2014-5-1 - support for replacing the DBpedia ontology
with user’s ontology, support for selecting a subgraph of DBpedia

– 0.25 - released 2014-4-20 - support for real-time analysis of Twitter
streams

– 0.2 - released 2014-4-1 - support for social media sign-in, added Twitter,
LinkedIn, Facebook and G+ input sources, added sentiment analysis
view

– 0.1 - released 2014-1-17 - initial version

• SlideWiki (https://github.com/AKSW/SlideWiki)

– 0.1 - released 2013-9-24 - initial version

• Pharmer (https://code.google.com/p/pharmer)

– 0.1 - released 2012-12-1 - initial version

163

https://bitbucket.org/ali1k/rdface
http://wordpress.org/plugins/rdface/
http://wordpress.org/plugins/rdface/
https://github.com/AKSW/context
https://github.com/AKSW/SlideWiki
https://code.google.com/p/pharmer

List of Abbreviations

API Application Programming Interface, pp. 38, 80, 82–84, 88, 89, 91, 92, 95, 99,
106, 108, 114

ATAG Authoring Tool Accessibility Guidelines, p. 59

ATR Automatic Term Recognition, pp. 25, 26

BOA BOotstrapping linked datA, p. 107

CMS Content Management System, pp. 7, 81, 91, 156

CSS Cascading Style Sheets, pp. 63, 83, 95, 134

CURIE Compact URI, p. 18

D3 Data-Driven Document, pp. 108, 114

DOM Document Object Model, pp. 82–84

DSL Domain-Specific Language, pp. 123, 124

EL Entity Linking, pp. 25, 26

ER Entity-Relation, pp. 10, 63, 121

FOAF Friend Of A Friend, pp. 47, 68

FOX Federated knOwledge eXtraction Framework, p. 107

HCI Human Computer Interaction, pp. 35, 75

IRI Internationalized Resource Identifier, p. 17

JSON JavaScript Object Notation, pp. 17, 94, 114, 135, 137

KB Knowledge Base, pp. 26, 161, 162

KE Keyword Extraction, pp. 25, 26

KR Knowledge Representation, p. 4

LCMS Learning Content Management Systems, pp. 125, 127, 136, 162

164

LD Linked Data, pp. 17, 27, 106, 141–143

LOD Linked Open Data, pp. 141–143, 145, 151

LODD Linked Open Drug Data, pp. 8, 140, 142, 143, 150, 152

LOM Learning Objects Metadata, p. 136

LOR Learning Objects Repository, pp. 135, 136

MVC Model-View-Controller, pp. 114, 121, 124, 131, 136

NER Named Entity Recognition, pp. 9, 25, 26, 103, 162

NIF NLP Interchange Format, pp. 8, 27, 108, 114, 159

NLP Natural Language Processing, pp. 1, 3, 7, 9, 25, 27, 38, 78, 80, 83, 84, 88, 89,
95, 99, 102–104, 106–108, 114, 118, 145, 147, 156, 157, 159–162

OCA One Click Annotation, pp. 57, 64

OCW OpenCourseWare, p. 126

OPML Outline Processor Markup Language, p. 135

OWL Web Ontology Language, pp. 27, 35

PbE Programming by Example, p. 43

POS Part-Of-Speech, p. 25

QUIM Quality in Use Integrated Measurement, p. 42

RDBMS Relational Database Management System, p. 25

RDF Resource Description Frameworka, pp. 8, 12–19, 24, 25, 27, 35, 47, 56–58,
63, 68, 69, 83, 100, 105, 107, 119, 122, 124, 136, 143, 146

RDFa Resource Description Framework in Attributes, pp. 18, 19, 35, 37, 47, 54,
58, 67, 69, 82–84, 86, 87, 92, 95, 96, 98–100, 108, 146, 159

RSS Rich Site Summary, pp. 106, 135

SCA Semantic Content Authoring, pp. 5, 8, 9, 28, 32, 35, 38, 39, 41–48, 52, 54,
59–61, 99, 155–157, 161

SCAUI Semantic Content Authoring User Interface, pp. 35, 58–60

SCORM Sharable Content Object Reference Model, pp. 126, 162

SDM Shared Decision Making, p. 149

165

A. Software Release History

SEO Search Engine Optimization, pp. 7, 110, 159

SIOC Semantically-Interlinked Online Communities, pp. 47, 68

SKOS Simple Knowledge Organization System, pp. 1, 35, 47, 68

SPARQL SPARQL Protocol and RDF Query Language, pp. 8, 12, 24, 25, 35, 106,
119, 124, 145, 147

SUS System Usability Scale, pp. 117, 137, 153

UI User Interface, pp. 3–9, 28, 32, 39, 41–45, 47, 52, 54–66, 68, 71, 73–75, 78, 79,
82, 83, 86, 95, 98, 102, 105, 110, 145, 146, 155, 156, 158, 160, 161

URI Uniform Resource Identifier, pp. 13–15, 18, 24, 27, 45, 68, 78, 83, 84, 97, 98,
107, 114, 141, 142

URL Uniform Resource Locator, pp. 14, 19, 136

W3C World Wide Web consortium, pp. 12, 13, 20, 24, 142

WCAG Web Content Accessibility Guidelines, p. 59

WKF Wikification, pp. 25, 26

WYSIWYG What You See Is What You Get, pp. 7, 9, 58, 74, 80, 81, 86, 101, 132,
156

WYSIWYM What You See Is What You Mean, pp. 2, 6, 7, 9, 10, 62–67, 78–81,
86, 87, 96, 101, 102, 108, 119, 131, 132, 139, 140, 146, 154, 156–161

166

List of Tables

2.1. Sample RDF statements. 16

3.1. List of quality attributes together with their corresponding UI
features suggested for SCA systems. 40

3.2. Relation between usability factors and criteria (’+’ indicates the
positive effect of a criteria on usability factors). 42

3.3. User types, domain and authoring approach of the surveyed SCA
systems. 51

3.4. User interface evaluation methods. 53
3.5. Comparison of OntoWiki, SAHA 3, Loomp according to the quality

attributes. 55

5.1. Recall, Precision and F-score for each API and combined APIs. . 90
5.2. Participants level of knowledge. 98
5.3. Usability factors derived from the survey. 99

6.1. NLP Feedback parameters. 109
6.2. conTEXT’s extensible architecture supports a variety of plug-able

components for various processing and interaction stages. 113

167

List of Figures

1.1. A simple user scenario to exploit semantically-enriched content. . 2
1.2. Summary of research questions and key contributions. 6
1.3. Overview of the chapters together with their corresponding research

& application artifacts. 11

2.1. Semantic Web technology stack. 13
2.2. RDF statement represented as a directed graph. 14
2.3. Small knowledge base about Ali Khalili represented as a graph. . 16
2.4. Sample RDF/XML format. 17
2.5. Sample N3 format. 17
2.6. Sample JSON-LD format. 18
2.7. Sample RDFa format. 19
2.8. Sample Microdata format. 20
2.9. Excerpt of the DBpedia ontology. 21
2.10. Level of expressiveness of ontologies (source:[Schaffert, 2006]). . . 22
2.11. An example schema (LocalBusiness) from Schema.org. 24
2.12. SPARQL query to get the homepage of Ali Khalili’s current project. 25
2.13. Examples of information extraction subtasks (source:[Mendes, 2013]). 26
2.14. An example of NIF integration (source:[Hellmann et al., 2013]). . 27

3.1. Steps followed to scope the search results. 30
3.2. The screenshot of the coding software showing the generated list of

codes from the primary studies. 31
3.3. Publications per year. 33
3.4. Semantic content authoring ecosystem. 34
3.5. Top-Down and Bottom-Up approaches for semantic content authoring. 36
3.6. Quality attributes dependencies (‘+’: positive effect, ‘+-’: reciprocal

effect). 48
3.7. Screenshot of the OntoWiki instance view with inline editing. . . 56
3.8. Screenshot of the SAHA 3 inline editing. 57
3.9. Screenshot of the Loomp faceted viewing UI. 58

4.1. Schematic view of the WYSIWYM model. 65
4.2. Comparison of existing visual mapping techniques in terms of se-

mantic expressiveness and complexity of visual mapping. 67

168

List of Figures

4.3. Screenshots of user interface techniques for visualization and ex-
ploration: 1-framing using borders, 2-framing using backgrounds,
3-video subtitle, 4-line connectors and arrow connectors, 5-bar lay-
outs, 6-text formatting, 7-image color effects, framing and line
connectors, 8-expandable callout, 9-marking with icons, 10-tooltip
callout, 11-faceting . 70

4.4. Possible bindings between user interface and semantic representation
model elements. 77

5.1. RDFaCE system architecture. 82
5.2. Annotation user interface. 85
5.3. The four views for semantic text authoring. 86
5.4. RDFaCE WYSIWYM implementation (T6 indicates the RDFaCE

menu bar, V1 – the framing of named entities in the text, V9 – a
callout showing additional type information, T5 – a context menu
for revising annotations). 87

5.5. Generated results of different NLP APIs for article #1. 88
5.6. Avg. Precision, Recall and F-score for each API & their combination. 89
5.7. Screenshot of RDFaCE integrated into WordPress. 92
5.8. Architecture of RDFaCE-Lite. 93
5.9. Screenshot of RDFaCE-Lite with support for rNews. 94
5.10. Configuration steps in RDFaCE Schema.org edition. 95
5.11. Search results improved by rich snippets. A: enhanced recipe, B:

normal recipe, C: browsing recipes by ingredients, cook time and
calories. 96

5.12. Example of Microdata annotations generated by RDFaCE. 97
5.13. Using RDFaCE to annotate recipes based on Schema.org. 98
5.14. Results of usability test. (top) Number of annotations per user.

(bottom) Annotation time per user. 100
5.15. Comparison of RDFauthor, SAHA 3, Loomp and RDFaCE according

to the quality attributes. 101

6.1. Flexibility of user interfaces and targeted user groups as well as
genericity (circle size) and degree of structure (circle color) for
various analytics platforms. 104

6.2. Text analytics workflow in conTEXT. 107
6.3. Screenshots of the conTEXT WYSIWYM interface (T2 indicates

the inline editing UI, V1 – the framing of named entities in the
text, V2 – text margin formatting for visualizing hierarchy, V7 –
line connectors to show the relation between entities, V9 – a callout
showing additional type information, X2 – faceted browsing, H3 –
recommendation for NLP feedback). 109

6.4. Example of realtime semantic analysis in conTEXT. 110

169

Schema.org

List of Figures

6.5. Different views on an analyzed corpus: 1) faceted browser, 2) matrix
view, 3) sentiment view 4) image view, 5) tag cloud, 6) chordal
graph view, 7) map view, 8) timeline, 9) trend view. 111

6.6. conTEXT data model. 114
6.7. Generated semantic annotations represented in NIF/JSON. 115
6.8. conTEXT task evaluation platform: Left – task view showing the

tasks assigned to an evaluation subject, Right – individual task. . 115
6.9. Avg. Jaccard similarity index for answers using & without the

conTEXT. 117
6.10. Avg. time spent (in second) for finding answers using & without

the conTEXT. 117
6.11. Result of conTEXT usability evaluation using SUS questionnaire. 118

7.1. Schematic view of the WikiApp data model. 120
7.2. Instantiation of the WikiApp DSL representing the SlideWiki model.124
7.3. Generated database schema by Wikifier. 125
7.4. Crowdlearning strategies in SlideWiki. 126
7.5. SlideWiki ecosystem for organizational knowledge sharing. 130
7.6. Bird’s eye view on the SlideWiki MVC architecture. 132
7.7. Screenshots of the SlideWiki WYSIWYM interface (V2 – text margin

formatting for visualizing content tree, V7 – line connectors to show
the relation between slides and decks, X4 – expanding & drilling
down to explore content, T4 – drag & drop to change the order
of slides and decks, T6 – floating ribbon editing to author slide
content, H5 – collaboration and crowdsourcing helper components). 133

7.8. Decision flow during the creation of new slide and deck revisions. 134
7.9. Editing of a question & Test mode in SlideWiki. 135
7.10. Mapping of URLs to MVC actions in SlideWiki. 136
7.11. An screenshot of the Semantic Web lecture series created collabora-

tively on SlideWiki. 138
7.12. Result of SlideWiki usability evaluation using SUS questionnaire. 139

8.1. Available datasets related to life sciences and pharmaceutical research.142
8.2. Bottom-up semantic enrichment of prescriptions. 144
8.3. Architecture of the Pharmer system. 145
8.4. Pharmer WYSIWYM implementation (V1 – highlighting of drugs

through framing, V9 – additional information about a drug in
a callout, T1/T2 combined form and inline editing of electronic
prescriptions). 146

8.5. Screenshot of the Pharmer application (top-left: general view, top-
right: drug information view, bottom-left: prescription authoring
view, bottom-right: drug interaction-finder results). 148

8.6. Graph view in Pharmer. 149
8.7. Screenshot of Pharmer mobile application. 150

170

List of Figures

8.8. Pharmer ecosystem. 151
8.9. Usability evaluation results for Pharmer. 153

9.1. User-friendy manual & semi-automatic creation of rich semantic
content. 158

171

Bibliography

[ADL, 2011a] ADL (2011a). Scorm 2004 4th edition specification. http://www.

adlnet.gov/scorm/scorm-2004-4th/.

[ADL, 2011b] ADL (2011b). Scorm users guide for programmers.
http://www.adlnet.gov/wp-content/uploads/2011/12/SCORM_Users_

Guide_for_Programmers.pdf.

[Adrian et al., 2010] Adrian, B., Hees, J., Herman, I., Sintek, M., and Dengel, A.
(2010). Epiphany: Adaptable rdfa generation linking the web of documents to the
web of data. In Cimiano, P. and Pinto, H., editors, Knowledge Engineering and
Management by the Masses, volume 6317 of Lecture Notes in Computer Science,
pages 178–192. Springer Berlin / Heidelberg. 10.1007/978-3-642-16438-5-13.

[Ankolekar et al., 2007] Ankolekar, A., Krötzsch, M., Tran, T., and Vrandecic, D.
(2007). The two cultures: mashing up web 2.0 and the semantic web. In WWW
’07: Proceedings of the 16th international conference on World Wide Web, pages
825–834, New York, NY, USA. ACM Press.

[Araujo et al., 2010] Araujo, S., Houben, G.-J., and Schwabe, D. (2010). Linkator:
Enriching web pages by automatically adding dereferenceable semantic annota-
tions. In Web Engineering, volume 6189 of Lecture Notes in Computer Science,
pages 355–369. Springer.

[Auer et al., 2012a] Auer, S., Bühmann, L., Dirschl, C., Erling, O., Hausenblas,
M., Isele, R., Lehmann, J., Martin, M., Mendes, P., Nuffelen, B., Stadler, C.,
Tramp, S., and Williams, H. (2012a). Managing the life-cycle of linked data
with the lod2 stack. In Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T.,
Euzenat, J., Hauswirth, M., Parreira, J., Hendler, J., Schreiber, G., Bernstein,
A., and Blomqvist, E., editors, The Semantic Web – ISWC 2012, Lecture Notes
in Computer Science, pages 1–16. Springer Berlin Heidelberg.

[Auer et al., 2012b] Auer, S., Demter, J., Martin, M., and Lehmann, J. (2012b).
Lodstats – an extensible framework for high-performance dataset analytics. In
Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov,
A., Aussenac-Gilles, N., and Hernandez, N., editors, Knowledge Engineering and
Knowledge Management, volume 7603 of Lecture Notes in Computer Science,
pages 353–362. Springer Berlin Heidelberg.

[Auer et al., 2009] Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., and Au-
mueller, D. (2009). Triplify: Light-weight linked data publication from relational
databases. In WWW2009, Spain. ACM.

172

http://www.adlnet.gov/scorm/scorm-2004-4th/
http://www.adlnet.gov/scorm/scorm-2004-4th/
http://www.adlnet.gov/wp-content/uploads/2011/12/SCORM_Users_Guide_for_Programmers.pdf
http://www.adlnet.gov/wp-content/uploads/2011/12/SCORM_Users_Guide_for_Programmers.pdf

Bibliography

[Auer et al., 2006] Auer, S., Dietzold, S., and Riechert, T. (2006). Ontowiki – a
tool for social, semantic collaboration. In Cruz, I., Decker, S., Allemang, D.,
Preist, C., Schwabe, D., Mika, P., Uschold, M., and Aroyo, L., editors, The
Semantic Web - ISWC 2006, volume 4273 of Lecture Notes in Computer Science,
pages 736–749. Springer Berlin / Heidelberg. 10.1007/11926078-53.

[Auer et al., 2013] Auer, S., Khalili, A., and Tarasowa, D. (2013). Crowd-sourced
open courseware authoring with slidewiki.org. International Journal of Emerging
Technologies in Learning (iJET), 8(1).

[Beckett, 2004] Beckett, D. (2004). RDF/XML syntax specification (revised).
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/.

[Benson et al., 2010] Benson, E., Marcus, A., Howahl, F., and Karger, D. (2010).
Talking about data: Sharing richly structured information through blogs and
wikis. In The Semantic Web – ISWC 2010, volume 6496 of Lecture Notes in
Computer Science, pages 48–63. Springer.

[Berners-Lee and Connolly, 2011] Berners-Lee, T. and Connolly, D. (2011). No-
tation3 (N3): A readable RDF syntax. http://www.w3.org/TeamSubmission/
n3/.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
semantic web. Scientific American, 284(5):34–43.

[Berners-Lee et al., 2007] Berners-Lee, T., Hollenbach, J., Lu, K., Presbrey, J.,
d’ommeaux, E. P., and m.c. schraefel (2007). Tabulator redux: Writing into the
semantic web. http://eprints.ecs.soton.ac.uk/14773/. Tabulator Redux
tech report.

[Bishop et al., 2011] Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev,
Z., and Velkov, R. (2011). OWLIM: A family of scalable semantic repositories.
Semantic Web, 2(1):1–10.

[Bizer et al., 2013] Bizer, C., Eckert, K., Meusel, R., M?hleisen, H., Schuhmacher,
M., and V?lker, J. (2013). Deployment of rdfa, microdata, and microformats
on the web - a quantitative analysis. In 12th International Semantic Web
Conference, 21-25 October 2013, Sydney, Australia, In-Use track.

[Bizer et al., 2009] Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked Data
- The Story So Far. International Journal on Semantic Web and Information
Systems (IJSWIS), 5(3):1–22.

[Bizer and Schultz, 2009] Bizer, C. and Schultz, A. (2009). The berlin sparql
benchmark. Int. J. Semantic Web Inf. Syst., 5(2):1–24.

173

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/
http://eprints.ecs.soton.ac.uk/14773/

Bibliography

[Blankenship and Ruona, 2009] Blankenship, S. and Ruona, W. (2009). Exploring
knowledge sharing in social structures: Potential contributions to an overall
knowledge management strategy. Advances in Developing Human Resources,
11(3).

[Bostock et al., 2011] Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3 data-
driven documents. Visualization and Computer Graphics, IEEE Transactions
on, 17(12):2301–2309.

[Breslin et al., 2009] Breslin, J., Passant, A., and Decker, S. (2009). The Social
Semantic Web. Springer-Verlag, Heidelberg.

[Broekstra et al., 2002] Broekstra, J., Kampman, A., and van Harmelen, F. (2002).
Sesame: A generic architecture for storing and querying RDF and RDF schema.
In ISWC, number 2342 in LNCS, pages 54–68. Springer.

[Buffa et al., 2008] Buffa, M., Gandon, F., Ereteo, G., Sander, P., and Faron, C.
(2008). Sweetwiki: A semantic wiki. Web Semantics: Science, Services and
Agents on the World Wide Web, 6(1):84 – 97. Semantic Web and Web 2.0.

[Burel et al., 2009] Burel, G., Cano1, A. E., and Lanfranchi, V. (2009). Ozone
browser: Augmenting the web with semantic overlays. volume 449 of CEUR
WS Proceedings.

[Camara et al., 1999] Camara, G., Souza, R. C. M., Monteiro, A. M., Paiva, J.,
Garrido, J., Câmara, G., Cartaxo, R., Souza, M. D., Miguel, A., Monteiro, V.,
Carlos, J., Garrido, P. D., Processamento, D., and Dpi, I. (1999). Handling
complexity in gis interface design. In In: Proceedings of the I Brazilian Workshop
on GeoInformatics, Campinas, São.

[Casey and Olivera, 2011] Casey, A. J. and Olivera, F. (2011). Reflections on or-
ganizational memory and forgetting. Journal of Management Inquiry, 20(3):305–
310.

[Chang et al., 2013] Chang, K. S.-P., Myers, B. A., Cahill, G. M., Simanta, S.,
Morris, E., and Lewis, G. (2013). Improving structured data entry on mobile
devices. In Proceedings of the 26th Annual ACM Symposium on User Interface
Software and Technology, UIST ’13, pages 75–84, New York, NY, USA. ACM.

[Charles et al., 1997] Charles, C., Gafni, A., and Whelan, T. (1997). Shared
decision-making in the medical encounter: What does it mean? (or it takes at
least two to tango). Social Science & Medicine, 44(5):681 – 692.

[Chen and Babar, 2011] Chen, L. and Babar, M. A. (2011). A systematic review
of evaluation of variability management approaches in software product lines.
Information & Software Technology, 53(4):344–362.

174

Bibliography

[Chu et al., 2009] Chu, H.-C., Chen, M.-Y., and Chen, Y.-M. (2009). A semantic-
based approach to content abstraction and annotation for content management.
Expert Systems with Applications, 36(2, Part 1):2360 – 2376.

[Clark et al., 2008] Clark, K. G., Feigenbaum, L., and Torres, E. (2008). SPARQL
Protocol for RDF. World Wide Web Consortium, Recommendation REC-
rdf-sparql-protocol-20080115 http://www.w3.org/TR/2008/REC-rdf-sparql-

protocol-20080115.

[Cobb and Steele, 2011] Cobb, J. and Steele, C. (2011). Association learning man-
agement systems. http://www.tagoras.com/docs/Tagoras-Association-

LMS-Report-Overview.pdf.

[Cunningham et al., 2011] Cunningham, H., Maynard, D., Bontcheva, K., Tablan,
V., Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic,
D., Heitz, T., Greenwood, M. A., Saggion, H., Petrak, J., Li, Y., and Peters, W.
(2011). Text Processing with GATE (Version 6).

[Dadzie and Rowe, 2011] Dadzie, A.-S. and Rowe, M. (2011). Approaches to
visualising linked data: A survey. Semantic Web, 2(2):89–124.

[d’Aquin et al., 2008] d’Aquin, M., Motta, E., Dzbor, M., Gridinoc, L., Heath, T.,
and Sabou, M. (2008). Collaborative semantic authoring. Intelligent Systems,
IEEE, 23(3):80 –83.

[Davis et al., 1993] Davis, R., Shrobe, H. E., and Szolovits, P. (1993). AI Magazine,
(1):17–33.

[Deligiannidis et al., 2007] Deligiannidis, L., Kochut, K. J., and Sheth, A. P.
(2007). RDF data exploration and visualization. In CIMS 2007, pages 39–
46. ACM.

[Di Iorio et al., 2010] Di Iorio, A., Musetti, A., Peroni, S., and Vitali, F. (2010).
Ontology-driven generation of wiki content and interfaces. New review of
hypermedia and multimedia, 16(1-2, SI):9–31.

[Dyba et al., 2007] Dyba, T., Dingsoyr, T., and Hanssen, G. K. (2007). Applying
systematic reviews to diverse study types: An experience report. In Proceedings
of the First International Symposium on Empirical Software Engineering and
Measurement, ESEM ’07, pages 225–234, Washington, DC, USA. IEEE Computer
Society.

[Ennals et al., 2007] Ennals, R., Brewer, E. A., Garofalakis, M. N., Shadle, M.,
and Gandhi, P. (2007). Intel mash maker: join the web. SIGMOD Record,
36(4):27–33.

175

http://www.w3.org/TR/2008/REC-rdf-sparql-protocol-20080115
http://www.w3.org/TR/2008/REC-rdf-sparql-protocol-20080115
http://www.tagoras.com/docs/Tagoras-Association-LMS-Report-Overview.pdf
http://www.tagoras.com/docs/Tagoras-Association-LMS-Report-Overview.pdf

Bibliography

[Erling and Mikhailov, 2007] Erling, O. and Mikhailov, I. (2007). RDF support
in the virtuoso DBMS. In Auer, S., Bizer, C., Müller, C., and Zhdanova, A. V.,
editors, CSSW, volume 113 of LNI, pages 59–68. GI.

[Ermilov et al., 2011] Ermilov, T., Heino, N., Tramp, S., and Auer, S. (2011).
Ontowiki mobile – knowledge management in your pocket. In 8th Extended
Semantic Web Conference (ESWC2011).

[Ferrucci and Lally, 2004] Ferrucci, D. and Lally, A. (2004). Uima: an architectural
approach to unstructured information processing in the corporate research
environment. Nat. Lang. Eng., 10(3-4):327–348.

[Fitzpatrick, 1998] Fitzpatrick, R. (1998). Strategies for evaluating software us-
ability. Methods, 353(1).

[Fonstad, 2005] Fonstad, N. O. (2005). Tangible purposes and common beacons:
The interrelated roles of identity and technology in collaborative endeavors. In
OKLC (Organizational Learning, Knowledge and Capabilities).

[Frosterus et al., 2011] Frosterus, M., Hyvönen, E., and Laitio, J. (2011). Datafin-
land—a semantic portal for open and linked datasets. In The Semanic Web:
Research and Applications, volume 6644 of LNCS, pages 243–254. Springer.

[Galanter et al., 2013] Galanter, W., Falck, S., Burns, M., Laragh, M., and Lam-
bert, B. L. (2013). Indication-based prescribing prevents wrong-patient medica-
tion errors in computerized provider order entry (cpoe). Journal of the American
Medical Informatics Association, 20:477–481.

[Geiger et al., 2011] Geiger, D., Rosemann, M., and Fielt, E. (2011). Crowd-
sourcing information systems : a systems theory perspective. In Australasian
Conference on Information Systems (ACIS) 2011, Sydney, Australia.

[Gerber and Ngonga Ngomo, 2011] Gerber, D. and Ngonga Ngomo, A.-C. (2011).
Bootstrapping the linked data web. In 1st Workshop on Web Scale Knowledge
Extraction @ ISWC 2011.

[Glaser and Strauss, 1967] Glaser, B. G. and Strauss, A. L. (1967). The Discovery
of Grounded Theory: Strategies for Qualitative Research. Aldine de Gruyter,
New York, NY.

[Goetz, 2011] Goetz, T. (2011). Harnessing the power of feedback loops. WIRED
Magazine.

[González et al., 2011] González, A. R., Garćıa-Crespo, Á., Palacios, R. C., Berb́ıs,
J. M. G., and Jiménez-Domingo, E. (2011). Using ontologies in drug prescription:
The semmed approach. IJKBO, 1(4):1–15.

176

Bibliography

[Greenfield, 2006] Greenfield, A. (2006). Everyware: The Dawning Age of Ubiqui-
tous Computing. New Riders Publishing, Berkeley, CA.

[Haase et al., 2010] Haase, P., Eberhart, A., Godelet, S., Mathäß, T., Tran, T.,
Ladwig, G., and Wagner, A. (2010). The information workbench. interacting
with the web of data. In 3rd Future Internet Symposium (FIS2010).

[Hachey, 2011] Hachey, G. (2011). Semantic web user interface: A systematic
survey. Master’s thesis, Athabasca University.

[Haller and Abecker, 2010] Haller, H. and Abecker, A. (2010). imapping: a zoom-
ing user interface approach for personal and semantic knowledge management.
SIGWEB Newsl., pages 4:1–4:10.

[Hasida, 2007] Hasida, K. (2007). Semantic authoring and semantic computing.
In Sakurai, A., Hasida, K., and Nitta, K., editors, New Frontiers in Artificial
Intelligence, volume 3609 of Lecture Notes in Computer Science, pages 137–149.
Springer. 10.1007/978-3-540-71009-7-12.

[Heese et al., 2010] Heese, R., Luczak-Rösch, M., Oldakowski, R., Streibel, O.,
and Paschke, A. (2010). One click annotation. In Scripting and Development
for the Semantic Web (SFSW).

[Heflin, 2004] Heflin, J. (2004). OWL Web Ontology Language Use Cases and
Requirements. Technical report, W3C.

[Heino et al., 2009] Heino, N., Dietzold, S., Martin, M., and Auer, S. (2009).
Developing semantic web applications with the ontowiki framework. In Net-
worked Knowledge - Networked Media, volume 221 of Studies in Computational
Intelligence, pages 61–77. Springer, Berlin / Heidelberg.

[Heino et al., 2011] Heino, N., Tramp, S., and Auer, S. (2011). Managing web
content using linked data principles – combining semantic structure with dynamic
content syndication. In Proceedings of the 35th Annual IEEE International
Computer Software and Applications Conference (COMPSAC 2011). IEEE
Computer Society.

[Heinrich et al., 2012] Heinrich, M., Lehmann, F., Springer, T., and Gaedke, M.
(2012). Exploiting single-user web applications for shared editing: a generic
transformation approach. In WWW 2012, pages 1057–1066. ACM.

[Heitmann et al., 2009] Heitmann, B., Kinsella, S., Hayes, C., and Decker, S.
(2009). Implementing semantic web applications: reference architecture and
challenges. In 5th International Workshop on Semantic Web-Enabled Software
Engineering.

177

Bibliography

[Hellmann et al., 2013] Hellmann, S., Lehmann, J., Auer, S., and Brümmer, M.
(2013). Integrating nlp using linked data. In 12th International Semantic Web
Conference, 21-25 October 2013, Sydney, Australia.

[Herzig and Ell, 2010] Herzig, D. and Ell, B. (2010). Semantic mediawiki in op-
eration: Experiences with building a semantic portal. In The Semantic Web –
ISWC 2010, volume 6497 of Lecture Notes in Computer Science, pages 114–128.
Springer. 10.1007/978-3-642-17749-1-8.

[Hong and Chi,] Hong, L. and Chi, E. H. Annotate once, appear anywhere:
collective foraging for snippets of interest using paragraph fingerprinting. CHI
’09, pages 1791–1794. ACM.

[Howe, 2006] Howe, J. (2006). The rise of crowdsourcing. Wired Magazine, 14(6).

[Huynh et al., 2003] Huynh, D., Quan, D., and Karger, D. R. (2003). User interac-
tion experience for semantic web information. In King, I. and Máray, T., editors,
WWW (Posters).

[Huynh et al., 2007] Huynh, D. F., Karger, D. R., and Miller, R. C. (2007). Exhibit:
lightweight structured data publishing. WWW ’07, pages 737–746, New York,
NY, USA. ACM.

[Johnson, 2014] Johnson, J. (2014). Designing with the Mind in Mind, Second
Edition: Simple Guide to Understanding User Interface Design Guidelines.
Morgan Kaufmann Publishers Inc.

[Jungermann, 2009] Jungermann, F. (2009). Information extraction with rapid-
miner. Proceedings of the GSCL Symposium Sprachtechnologie und eHumanities.

[Kandel et al., 2011] Kandel, S., Paepcke, A., Hellerstein, J., and Heer, J. (2011).
Wrangler: interactive visual specification of data transformation scripts. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’11, pages 3363–3372. ACM.

[Karger et al., 2009] Karger, D. R., Ostler, S., and Lee, R. (2009). The web page
as a wysiwyg end-user customizable database-backed information management
application. In UIST 2009, pages 257–260. ACM.

[Karger and Quan, 2005] Karger, D. R. and Quan, D. (2005). What would it mean
to blog on the semantic web? Web Semantics: Science, Services and Agents on
the World Wide Web, 3(2-3):147 – 157.

[Khalili and Auer, 2013a] Khalili, A. and Auer, S. (2013a). User interfaces for
semantic authoring of textual content: A systematic literature review. Web
Semantics: Science, Services and Agents on the World Wide Web, 22(0):1 – 18.

178

Bibliography

[Khalili and Auer, 2013b] Khalili, A. and Auer, S. (2013b). Wysiwym authoring
of structured content based on schema.org. In Lin, X., Manolopoulos, Y.,
Srivastava, D., and Huang, G., editors, The 14th International Conference on
Web Information Systems Engineering (WISE 2013), volume 8181 of Lecture
Notes in Computer Science, pages 425–438. Springer Berlin Heidelberg.

[Khalili and Auer, 2014] Khalili, A. and Auer, S. (2014). Wysiwym – integrated
visualization, exploration and authoring of semantically enriched un-structured
content. Semantic Web Journal.

[Khalili et al., 2012a] Khalili, A., Auer, S., and Hladky, D. (2012a). The rdfa
content editor - from wysiwyg to wysiwym. In 2012 IEEE 36th Annual Computer
Software and Applications Conference (COMPSAC), pages 531–540.

[Khalili et al., 2014] Khalili, A., Auer, S., and Ngomo, A.-C. N. (2014). context –
lightweight text analytics using linked data. In 11th Extended Semantic Web
Conference (ESWC 2014), pages 628–643. Springer International Publishing
Switzerland.

[Khalili et al., 2012b] Khalili, A., Auer, S., Tarasowa, D., and Ermilov, I. (2012b).
Slidewiki: Elicitation and sharing of corporate knowledge using presentations. In
Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov,
A., Aussenac-Gilles, N., and Hernandez, N., editors, The 18th International
Conference on Knowledge Engineering and Knowledge Management (EKAW
2012), volume 7603 of Lecture Notes in Computer Science, pages 302–316.
Springer Berlin Heidelberg.

[Khalili and Sedaghati, 2013a] Khalili, A. and Sedaghati, B. (2013a). Semantic
medical prescriptions – towards intelligent and interoperable medical prescrip-
tions. In IEEE Seventh International Conference on Semantic Computing (ICSC
2013), pages 347–354.

[Khalili and Sedaghati, 2013b] Khalili, A. and Sedaghati, B. (2013b). A wysiwym
interface for semantic enrichment of e-prescriptions using linked open drug data.
International Journal On Advances in Life Sciences, 5(3,4):204 – 213.

[Kitchenham, 2004] Kitchenham, B. (2004). Procedures for performing systematic
reviews. Technical report, Keele University and NICTA.

[Kiyavitskaya et al., 2009] Kiyavitskaya, N., Zeni, N., Cordy, J. R., Mich, L.,
and Mylopoulost, J. (2009). Cerno: Light-weight tool support for semantic
annotation of textual documents. Data & Knowledge Engineering, 68(12):1470
– 1492. Including Special Section: 21st IEEE International Symposium on
Computer-Based Medical Systems (IEEE CBMS 2008) - Seven selected and
extended papers on Biomedical Data Mining.

179

Bibliography

[Klebeck et al., 2011] Klebeck, A., Hellmann, S., Ehrlich, C., and Auer, S. (2011).
Ontosfeeder – a versatile semantic context provider for web content authoring.
In The Semanic Web: Research and Applications, volume 6644 of Lecture Notes
in Computer Science, pages 456–460. Springer.

[Kock et al., 2009] Kock, E. D., Biljon, J. V., and Pretorius, M. (2009). Usability
evaluation methods : Mind the gaps. Evaluation, pages 122–131.

[Krötzsch et al., 2007] Krötzsch, M., Vrandečić, D., Völkel, M., Haller, H., and
Studer, R. (2007). Semantic Wikipedia. Journal of Web Semantics, 5(4):251–261.

[Kurki and Hyvönen, 2010] Kurki, J. and Hyvönen, E. (2010). Collaborative
metadata editor integrated with ontology services and faceted portals. In 1st
Workshop on Ontology Repositories and Editors for the Semantic Web.

[Lane et al., 2010] Lane, N., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T.,
and Campbell, A. (2010). A survey of mobile phone sensing. Communications
Magazine, IEEE, 48(9):140–150.

[Lauesen, 2005] Lauesen, S. (2005). User Interface Design: A Software Engineering
Perspective. Addison Wesley.

[Leuf and Cunningham, 2001] Leuf, B. and Cunningham, W. (2001). The Wiki
way: quick collaboration on the Web. Addison-Wesley, London.

[Lewis and Sauro, 2009] Lewis, J. and Sauro, J. (2009). The Factor Structure of
the System Usability Scale. In Human Centered Design, volume 5619 of LNCS,
pages 94–103.

[Lin et al.,] Lin, J., Thomsen, M., and Landay, J. A. A visual language for
sketching large and complex interactive designs. CHI ’02, pages 307–314. ACM.

[Loecken et al., 2012] Loecken, A., Hesselmann, T., Pielot, M., Henze, N., and
Boll, S. (2012). User-centred process for the definition of free-hand gestures
applied to controlling music playback. Multimedia Syst., 18(1):15–31.

[Lohmann et al., 2008] Lohmann, S., Heim, P., Auer, S., Dietzold, S., and Riechert,
T. (2008). Semantifying requirements engineering – the softwiki approach. In
Proceedings of the 4th International Conference on Semantic Technologies (I-
SEMANTICS ’08), J.UCS, pages 182–185.

[Lopez et al., 2011] Lopez, V., Uren, V., Sabou, M., and Motta, E. (2011). Is
question answering fit for the semantic web? a survey. Semantic Web ?
Interoperability, Usability, Applicability, 2(2):125–155.

[Luczak-Roesch, 2009] Luczak-Roesch, R. H. M. (2009). Linked data authoring
for non-experts. In WWW WS on Linked Data on the Web (LDOW2009).

180

Bibliography

[Makhoul et al., 1999] Makhoul, J., Kubala, F., Schwartz, R., and Weischedel, R.
(1999). Performance measures for information extraction. In In Proceedings of
DARPA Broadcast News Workshop, pages 249–252.

[Melissa Conrad Stoppler, 2012] Melissa Conrad Stoppler, M. (2012). http://

www.medicinenet.com/script/main/art.asp?articlekey=55234.

[Mendes, 2013] Mendes, P. (2013). Adaptive Semantic Annotation of Entity and
Concept Mentions in Text. PhD thesis, Department of Computer Science and
Engineering, Wright State University.

[Mendes et al., 2011] Mendes, P. N., Jakob, M., Garćıa-Silva, A., and Bizer, C.
(2011). Dbpedia spotlight: shedding light on the web of documents. In Proceed-
ings of the 7th International Conference on Semantic Systems, I-Semantics ’11,
pages 1–8, New York, USA. ACM.

[Miles and Huberman, 1994] Miles, M. B. and Huberman, M. (1994). Qualitative
Data Analysis: An Expanded Sourcebook(2nd Edition). Sage Publications, Inc,
2nd edition.

[Morsey et al., 2011] Morsey, M., Lehmann, J., Auer, S., and Ngonga Ngomo,
A.-C. (2011). Dbpedia sparql benchmark – performance assessment with real
queries on real data. In ISWC 2011.

[Muller et al., 2011] Muller, W., Rojas, I., Eberhart, A., Haase, P., and Schmidt,
M. (2011). A-r-e: The author-review-execute environment. Procedia Computer
Science, 4:627 – 636. ICCS 2011.

[Myers, 1998] Myers, B. A. (1998). A brief history of human-computer interaction
technology. interactions, 5(2):44–54.

[Möller et al., 2006] Möller, K., Bojars, U., and Breslin, J. (2006). Using semantics
to enhance the blogging experience. In Sure, Y. and Domingue, J., editors, The
Semantic Web: Research and Applications, volume 4011 of Lecture Notes in
Computer Science, pages 679–696. Springer Berlin Heidelberg.

[Navarro-Galindo and Samos, 2010] Navarro-Galindo, J. L. and Samos, J. (2010).
Manual and automatic semantic annotation of web documents: the flersa tool.
In Proceedings of the 12th International Conference on Information Integration
and Web-based Applications Services, iiWAS ’10, pages 542–549, New York, NY,
USA. ACM.

[Ngomo et al., 2013] Ngomo, A.-C., Kolb, L., Heino, N., Hartung, M., Auer, S.,
and Rahm, E. (2013). When to reach for the cloud: Using parallel hardware
for link discovery. In Cimiano, P., Corcho, O., Presutti, V., Hollink, L., and
Rudolph, S., editors, The Semantic Web: Semantics and Big Data, volume
7882 of Lecture Notes in Computer Science, pages 275–289. Springer Berlin
Heidelberg.

181

http://www.medicinenet.com/script/main/art.asp?articlekey=55234
http://www.medicinenet.com/script/main/art.asp?articlekey=55234

Bibliography

[Ngomo et al., 2011] Ngomo, A.-C. N., Heino, N., Lyko, K., Speck, R., and
Kaltenböck, M. (2011). Scms - semantifying content management systems.
In ISWC, pages 189–204.

[Nielsen, 2012] Nielsen, J. (2012). Introduction to usability.

[Nielsen and Molich, 1990] Nielsen, J. and Molich, R. (1990). Heuristic evaluation
of user interfaces. In Proceedings of the SIGCHI conference on Human factors
in computing systems: Empowering people, CHI ’90, pages 249–256, New York,
NY, USA. ACM.

[O’Donoghue et al., 2010] O’Donoghue, S. I., Horn, H., Pafilis, E., Haag, S., Kuhn,
M., Satagopam, V. P., Schneider, R., and Jensen, L. J. (2010). Reflect: A
practical approach to web semantics. Web Semantics: Science, Services and
Agents on the World Wide Web, 8(2-3):182 – 189.

[Oviatt et al., 2000] Oviatt, S., Cohen, P., Wu, L., Vergo, J., Duncan, L., Suhm,
B., Bers, J., Holzman, T., Winograd, T., Landay, J., Larson, J., and Ferro,
D. (2000). Designing the user interface for multimodal speech and pen-based
gesture applications: state-of-the-art systems and future research directions.
Hum.-Comput. Interact., 15(4):263–322.

[Patel and Khuba, 2009] Patel, D. R. and Khuba, S. A. (2009). Realization of
semantic atom blog. Journal of Computing, 1:34 – 38.

[Paulheim and Probst, 2010] Paulheim, H. and Probst, F. (2010). Ontology-
enhanced user interfaces: A survey. International Journal on Semantic Web
and Information Systems (IJSWIS), 6:2.

[Perdrix et al., 2009] Perdrix, F., Garćıa, R., Gil, R., Oliva, M., and Maćıas, J. A.
(2009). Semantic web interfaces for newspaper multimedia content management.
In New Trends on Human-Computer Interaction, pages 1–10. Springer London.
10.1007/978-1-84882-352-53.

[Petrucka et al., 2013] Petrucka, P., Bassendowski, S., Roberts, H., and James, T.
(2013). mhealth: A vital link for ubiquitous health. Online Journal of Nursing
Informatics (OJNI), 17:2675.

[Pietriga et al., 2006] Pietriga, E., Bizer, C., Karger, D. R., and Lee, R. (2006).
Fresnel: A browser-independent presentation vocabulary for rdf. In ISWC,
LNCS, pages 158–171. Springer.

[Power et al., 1998] Power, R., Scott, D., and Evans, R. (1998). What You See Is
What You Meant: direct knowledge editing with natural language feedback. In
European Conference on Artificial Intelligence (ECAI), pages 677 – 681.

182

Bibliography

[Preotiuc-Pietro et al., 2012] Preotiuc-Pietro, D., Samangooei, S., Cohn, T., Gib-
bins, N., and Niranjan, M. (2012). Trendminer: an architecture for real time
analysis of social media text. http://people.eng.unimelb.edu.au/tcohn/

papers/trendminer+ramss+2012.pdf.

[Prud’hommeaux and Seaborne, 2008] Prud’hommeaux, E. and Seaborne, A.
(2008). SPARQL query language for RDF. http://www.w3.org/TR/rdf-

sparql-query/.

[Puustjärvi and Puustjärvi, 2006] Puustjärvi, J. and Puustjärvi, L. (2006). The
challenges of electronic prescription systems based on semantic web technologies.
In ECEH, pages 251–261.

[Quint and Vatton, 2007] Quint, V. and Vatton, I. (2007). Structured templates for
authoring semantically rich documents. In Proceedings of the 2007 international
workshop on Semantically aware document processing and indexing, SADPI ’07,
pages 41–48, New York, NY, USA. ACM.

[Riechert et al., 2010] Riechert, T., Morgenstern, U., Auer, S., Tramp, S., and
Martin, M. (2010). The catalogus professorum lipsiensis – semantics-based col-
laboration and exploration for historians. In Proceedings of the 9th International
Semantic Web Conference (ISWC2010), Lecture Notes in Computer Science,
Shanghai / China. Springer.

[Rizzo and Troncy, 2011] Rizzo, G. and Troncy, R. (2011). Nerd : a framework
for evaluating named entity recognition tools in the web of data.

[Ronallo, 2012] Ronallo, J. (2012). HTML5 Microdata and Schema.org. The
Code4Lib Journal, (16).

[Ross and Nisbett, 1991] Ross, L. and Nisbett, R. E. (1991). The person and the
situation : perspectives of social psychology / Lee Ross, Richard E. Nisbett.
Temple University Press Philadelphia.

[Ruiz-Rube et al., 2010] Ruiz-Rube, I., Cornejo, C. M., Dodero, J. M., and Garćıa,
V. M. (2010). Development issues on linked data weblog enrichment. In Sánchez-
Alonso, S. and Athanasiadis, I. N., editors, Metadata and Semantic Research,
volume 108 of Communications in Computer and Information Science, pages
235–246. Springer. 10.1007/978-3-642-16552-8-22.

[Sah et al., 2007] Sah, M., Hall, W., Gibbins, N. M., and Roure, D. C. D. (2007).
Semport - a personalized semantic portal. In 18th ACM Conf. on Hypertext and
Hypermedia, pages 31–32.

[Sahoo et al., 2009] Sahoo, S. S., Halb, W., Hellmann, S., Idehen, K., Jr, T. T.,
Auer, S., Sequeda, J., and Ezzat, A. (2009). A survey of current approaches for
mapping of relational databases to rdf. http://www.w3.org/2005/Incubator/
rdb2rdf/RDB2RDF_SurveyReport.pdf.

183

http://people.eng.unimelb.edu.au/tcohn/papers/trendminer+ramss+2012.pdf
http://people.eng.unimelb.edu.au/tcohn/papers/trendminer+ramss+2012.pdf
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf

Bibliography

[Saleem et al., 2013] Saleem, M., Padmanabhuni, S. S., Ngonga Ngomo, A.-C.,
Almeida, J. S., Decker, S., and Deus, H. F. (2013). Linked cancer genome atlas
database. In Proceedings of I-Semantics.

[Samwald et al., 2011a] Samwald, M., Jentzsch, A., Bouton, C., Kallesoe, C., Wil-
lighagen, E., Hajagos, J., Marshall, M., Prud’hommeaux, E., Hassanzadeh, O.,
Pichler, E., and Stephens, S. (2011a). Linked open drug data for pharmaceutical
research and development. Journal of Cheminformatics, 3(1).

[Samwald et al., 2011b] Samwald, M., Jentzsch, A., Bouton, C., KallesÃ¸e, C. S.,
Willighagen, E., Hajagos, J., Marshall, M. S., Prudâ€™hommeaux, E., Hassen-
zadeh, O., Pichler, E., and Stephens, S. (2011b). Linked open drug data for
pharmaceutical research and development. Journal of Cheminformatics, 3(19).

[Sauer, 2006] Sauer, C. (2006). What you see is wiki – questioning WYSIWYG in
the Internet age. In Proceedings of Wikimania 2006.

[Schaffert, 2006] Schaffert, S. (2006). Ikewiki: A semantic wiki for collaborative
knowledge management. In Enabling Technologies: Infrastructure for Collabora-
tive Enterprises, 2006. WETICE ’06. 15th IEEE International Workshops on,
pages 388–396.

[Schaffert et al., 2008] Schaffert, S., Bry, F., Baumeister, J., and Kiesel, M. (2008).
Semantic wikis. IEEE Software, 25(4):8–11.

[Schaffert et al., 2009] Schaffert, S., Eder, J., Grünwald, S., Kurz, T., Radulescu,
M., Sint, R., and Stroka, S. (2009). Kiwi - a platform for semantic social software.
In SemWiki.

[Seaman, 1999] Seaman, C. B. (1999). Qualitative methods in empirical studies of
software engineering. IEEE Trans. Software Eng., 25(4):557–572.

[Seffah et al., 2006] Seffah, A., Donyaee, M., Kline, R. B., and Padda, H. K. (2006).
Usability measurement and metrics: A consolidated model. Software Quality
Control, 14(2):159–178.

[Sheu et al., 2010] Sheu, P., Yu, H., Ramamoorthy, C. V., Joshi, A. K., and Zadeh,
L. A. (2010). Semantic Computing. Wiley-IEEE Press.

[Shneiderman, 2000] Shneiderman, B. (2000). Creating creativity: user interfaces
for supporting innovation. ACM Trans. Comput.-Hum. Interact., 7(1):114–138.

[Simperl, 2012] Simperl, E. (2012). Crowdsourcing semantic data management:
Challenges and opportunities. In Proceedings of the 2Nd International Conference
on Web Intelligence, Mining and Semantics, WIMS ’12, pages 1:1–1:3, New
York, NY, USA. ACM.

184

Bibliography

[Siorpaes and Simperl, 2010] Siorpaes, K. and Simperl, E. (2010). Human intel-
ligence in the process of semantic content creation. WORLD WIDE WEB-
INTERNET AND WEB INFORMATION SYSTEMS, 13(1-2, SI):33–59.

[Spiesser and Kitchen,] Spiesser, J. and Kitchen, L. Optimization of html auto-
matically generated by wysiwyg programs. In WWW 2004, pages 355–364.

[Tarasowa et al., 2014] Tarasowa, D., Auer, S., Khalili, A., and Unbehauen, J.
(2014). Crowd-sourcing (semantically) structured multilingual educational con-
tent (cosmec). Open Praxis, 6(2).

[Tarasowa et al., 2013] Tarasowa, D., Khalili, A., Auer, S., and Unbehauen, J.
(2013). Crowdlearn: Crowd-sourcing the creation of highly-structured e-learning
content. In Foley, O., Restivo, M. T., Uhomoibhi, J. O., and Helfert, M., editors,
CSEDU, pages 33–42. SciTePress.

[Thórisson et al., 2010] Thórisson, K., Spivack, N., and Wissner, J. (2010). The
semantic web: From representation to realization. In Transactions on Compu-
tational Collective Intelligence II, volume 6450 of Lecture Notes in Computer
Science, pages 90–107. Springer.

[Tramp et al., 2010] Tramp, S., Heino, N., Auer, S., and Frischmuth, P. (2010).
Rdfauthor: Employing rdfa for collaborative knowledge engineering. In Knowl-
edge Engineering and Management by the Masses, volume 6317 of LNCS, pages
90–104. Springer.

[Treviranus, 2008] Treviranus, J. (2008). Authoring tools. In Harper, S. and
Yesilada, Y., editors, Web Accessibility, Human-Computer Interaction Series,
pages 127–138. Springer. 10.1007/978-1-84800-050-69.

[Tunkelang, 2009] Tunkelang, D. (2009). Faceted Search (Synthesis Lectures on
Information Concepts, Retrieval, and Services). Morgan and Claypool Publishers.

[Uren et al., 2006] Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera,
M., Motta, E., and Ciravegna, F. (2006). Semantic annotation for knowledge
management: Requirements and a survey of the state of the art. Web Semantics:
Science, Services and Agents on the World Wide Web, 4(1):14 – 28.

[Valaski et al., 2012] Valaski, J., Malucelli, A., and Reinehr, S. (2012). Ontologies
application in organizational learning: A literature review. Expert Systems with
Applications, 39(8):7555 – 7561.

[Valkeapaeae et al., 2007] Valkeapaeae, O., Alm, O., and Hyvoenen, E. (2007). An
adaptable framework for ontology-based content creation on the semantic web.
JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 13(12):1835–1853. 28th
Annual Meeting of the Society-of-Behavioral-Medicine, Washington, DC, MAR
21-24, 2007.

185

Bibliography

[Van Kleek et al., 2007] Van Kleek, M., Bernstein, M., Karger, D. R., and schraefel,
m. (2007). Gui — phooey!: The case for text input. In Proceedings of the 20th
Annual ACM Symposium on User Interface Software and Technology, UIST ’07,
pages 193–202, New York, NY, USA. ACM.

[W3C, 2004] W3C (2004). Resource description framework (rdf). http://www.w3.
org/RDF/.

[W3C, 2009] W3C (2009). W3C semantic web activity. http://www.w3.org/

2001/sw/. Última visita 8/6/2010.

[W3Techs, 2011] W3Techs (2011). Usage of content management systems for web-
sites. http://w3techs.com/technologies/overview/content_management/

all.

[Wang et al., 2012] Wang, X., Love, P. E., Klinc, R., Kim, M. J., and Davis, P. R.
(2012). Integration of e-learning 2.0 with web 2.0. ITcon - Special Issue eLearning
2.0: Web 2.0-based social learning in built environment, 17:387–396.

[Wikipedia, 2013] Wikipedia (2013). SPARQL — Wikipedia, The Free En-
cyclopedia. http://en.wikipedia.org/w/index.php?title=SPARQL&oldid=

544624084. [Online; accessed 31-March-2013].

[Williams et al., 2012] Williams, A. J., Harland, L., Groth, P., Pettifer, S., Chich-
ester, C., Willighagen, E. L., Evelo, C. T., Blomberg, N., Ecker, G., Goble, C.,
and Mons, B. (2012). Open phacts: semantic interoperability for drug discovery.
Drug Discovery Today, 17(21-22):1188 – 1198.

[Yang et al., 2013] Yang, H., Pupons-Wickham, D., Chiticariu, L., Li, Y., Nguyen,
B., and Carreno-Fuentes, A. (2013). I can do text analytics!: designing devel-
opment tools for novice developers. CHI ’13, pages 1599–1608, New York, NY,
USA. ACM.

[Yu, 2006] Yu, B. (2006). Cognitive aspects of human-gis interaction : A literature
review cognitive aspects of human-gis interaction : A literature review. Interface,
pages 1–17.

[Yu, 2007] Yu, L. (2007). Introduction to Semantic Web and Semantic Web services.
Chapman & Hall/CRC, Boca Raton, FL.

[Lazaruk et al., 2012] Lazaruk, S., Kaczmarek, M., Dzikowski, J., Tokarchuk, O.,
and Abramowicz, W. (2012). Towards the semantic web – incentivizing semantic
annotation creation process. In Teije, A., Völker, J., Handschuh, S., Stucken-
schmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., and Hernandez, N.,
editors, Knowledge Engineering and Knowledge Management, volume 7603 of
Lecture Notes in Computer Science, pages 282–291. Springer Berlin Heidelberg.

186

http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/
http://w3techs.com/technologies/overview/content_management/all
http://w3techs.com/technologies/overview/content_management/all
http://en.wikipedia.org/w/index.php?title=SPARQL&oldid=544624084
http://en.wikipedia.org/w/index.php?title=SPARQL&oldid=544624084

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige
fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten
Quellen und Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich oder sin-
ngemäß aus veröffentlichten oder unveröffentlichten Schriften entnommen wurden,
und alle Angaben, die auf mündlichen Auskünften beruhen, als solche kenntlich
gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten Materialien
oder erbrachten Dienstleistungen als solche gekennzeichnet.

Leipzig, den 26.1.2015

Ali Khalili

187

	Cover Page
	Bibliographic Data
	Publications
	Dedication
	Acknowledgments
	Contents
	Introduction
	User Scenario
	Motivation
	Research Questions and Contributions
	Thesis in a Glance

	Semantic Web Technologies
	The Definition of Semantic Web
	Resource Description Framework (RDF)
	Resource
	Property
	Statement
	RDF Serialization Formats

	Ontology
	Ontology Classification
	Schema.org

	SPARQL Query Language
	Triplestore
	Natural Language Processing on the Semantic Web

	Concepts and State of the Art
	Research Method
	Research Questions
	Search Strategy
	Study Selection
	Data Extraction and Analysis
	Overview of Included Studies

	Terminology
	Semantic Authoring Approaches
	Bottom-Up Approaches
	Top-Down Approaches

	Quality Attributes
	Quality Attributes Dependencies
	User Types
	User Interface Evaluation
	Example Tools
	OntoWiki
	SAHA 3 Metadata Editor
	Loomp

	Research and Technology Challenges
	Conclusions

	WYSIWYM User Interface Model
	Approaches for Semantic UI Models
	Visual Mapping Techniques
	Structured Content Visualization
	WYSIWYM

	WYSIWYM Concept
	Semantic Representation Models
	Visualization
	Exploration
	Authoring
	Bindings
	Helper Components

	Conclusions

	From WYSIWYG to WYSIWYM
	WYSIWYG
	RDFaCE (RDFa Content Editor)
	Views for Semantic Text Authoring
	Combining NLP-API results
	Use Cases and Variations of RDFaCE
	Semantic Blogging in WordPress
	Data Journalism using rNews
	Search Engine Optimization (SEO) using Schema.org

	Usability Evaluation
	Comparison of RDFaCE to Existing SCA Tools
	Conclusions

	WYSIWYM for Lightweight Text Analytics
	Analytical Information Imbalance
	conTEXT: A Text Analytics Architecture of Participation
	Classification of Existing Text Analysis Tools
	Workflow and Interface Design
	Views for Text Analytics
	Implementation
	Evaluation
	Usefulness study
	Usability study

	Conclusion

	WYSIWYM for Authoring of E-Learning Content
	WikiApp Data Model
	Data Model
	Operations

	Model-driven generation of WikiApp implementations
	SlideWiki
	Authoring of OpenCourseWare
	Elicitation and Sharing of Corporate Knowledge

	Implementation
	SlideWiki vs. Presentation Management Systems
	Usability Evaluation
	Conclusion

	WYSIWYM for Authoring of Semantic Medical Prescriptions
	E-Prescriptions
	Linked Open Drug Data (LODD)
	Semantic Authoring of Medical Prescriptions using Pharmer
	Architecture
	Features

	Possible Use Cases of Pharmer
	A Ubiquitous Computing Platform for Semantic E-Prescribing
	A Professional Social Network for Health-care Service Providers

	Pharmer Stakeholders: Example Scenario
	Usability Evaluation
	Conclusion

	Conclusions and Future Work
	Answers to Research Questions
	Summary of the Results
	Impact
	Limitations and Future Directions

	Software Release History
	List of Abbreviations
	List of Tables
	List of Figures
	Selbständigkeitserklärung

