
A Service-oriented Search Framework for Full Text,
Geospatial and Semantic Search

Andreas Both
R&D, Unister GmbH
Leipzig (Germany)

andreas.both@unister.de

Axel-Cyrille Ngonga
Ngomo

Universität Leipzig, IFI/AKSW
Leipzig (Germany)

ngonga@informatik.uni-
leipzig.de

Ricardo Usbeck
Universität Leipzig, IFI/AKSW

Unister GmbH, Leipzig
usbeck@informatik.

uni-leipzig.de

Denis Lukovnikov
Universität Leipzig, IFI/AKSW

Leipzig (Germany)
lukovnikov@informatik.uni-

leipzig.de

Christiane Lemke
R&D, Unister GmbH
Leipzig (Germany)

christiane.lemke@unister.de

Maximilian Speicher
TU Chemnitz, VSR

Unister GmbH, Leipzig
speim@hrz.tu-

chemnitz.de

ABSTRACT
Over the last decade, a growing importance of search engines
could be observed. An increasing amount of knowledge is ex-
posed and connected within the Linked Open Data Cloud,
which raises users’ expectations to be able to search for any
information that is directly or indirectly contained. How-
ever, diverse data types require tailored search functionalit-
ies—such as semantic, geospatial and full text search.

Hence, using only one data management system will not pro-
vide the required functionality at the expected level. In this
paper, we will describe search services that provide specific
search functionality via a generalized interface inspired by
RDF. In addition, we introduce an application layer on top
of these services that enables to query them in a unified way.
This allows for the implementation of a distributed search
that leverages the identification of the optimal search service
for each query and subquery. This is achieved by connect-
ing powerful tools like Openlink Virtuoso, ElasticSearch and
PostGIS within a single framework.

General Terms
Distributed Search, Semantic Web, Information Retrieval

1. INTRODUCTION
Over the last two decades, the content of the World Wide
Web has grown to an enormous collection of webpages. In
addition, users have shifted their preference from desktop to
Web applications. This is primarily driven by growing tech-
nical capabilities of Web browsers as well as the demand
for exploiting the knowledge available on the Web. Partic-

ularly, large Web application providers—including Google,
Bing and Yahoo!—promise that any kind of information will
be made available through simple search queries.

In recent years, a very large number of datasets have been
published based on Semantic Web standards. More than 61
trillion triples1 are available through the Linked Open Data
(LOD) cloud by now. Instead of publishing text documents
containing unstructured information, the new paradigms de-
mand information which are structured by standards like
the Resource Description Framework (RDF)2. RDF can be
used for for publishing logical properties like typeOf rela-
tions (e.g., Germany is of the type country), standard type
properties (e.g., the number of people living on a square kilo-
meter within Germany: 229) or complex data types such as
geospatial coordinates (e.g., POINT(13.3833, 52.5167) in
the case of Germany). Since this data is published in a stan-
dardized format (i.e., RDF), it can be read and processed
by machines. This provides opportunities for creating novel
industrial applications.

The trend just described leads to a situation in which a
vast amount of unstructured information is available on the
Web next to a large amount of structured data accessible
for automatic processing by machines. While the latter data
representation enables direct access of annotated knowledge
and a derivation of insights, the knowledge of the textual
representations (mostly HTML documents) is not directly
accessible in an easy way. Thus, information retrieval me-
thods are needed in a preprocessing step to compute seman-
tic information which can be annotated within the (HTML)
document.

In the course of the current developments, users will tend
to reject search solutions based on the knowledge origina-
ting from one data representation only. On the one hand,
Google’s Web search3 demonstrates the advantages of sear-

1http://stats.lod2.eu/, retrieved June 16, 2014.
2http://www.w3.org/TR/rdf11-concepts/
3http://www.google.com

ching huge collections of textual documents. On the other
hand, applications like Wolfram Alpha4 and Apple’s Siri5

present the advantages of knowledge-driven search functio-
nalities.

Thus, a search infrastructure is required, which is capable of
integrating the functionalities of textual search with search
methods working on top of annotated semantics. User de-
mands in the context of e-commerce are particularly driven
by queries for products (i.e., the type of the subject of in-
terest), such as “hotel”, “flight” or “winter holiday”. Addi-
tionally, properties can express the requirements posed on
the subject of interest. Three different types have to be
considered in this case:

• logical properties, e.g., “has wifi”, “suitable for vege-
tarians”;

• geospatial properties, e.g., “north of London”, “close to
a beach”;

• properties driven by textual information, e.g.,“pool for
children”6 or a part of the name of the searched entity
(like “Kempinski”).

All three types of queries are well supported by specific in-
stances of data stores:

• searches for logical properties are implemented by triple
stores, e.g., the Openlink Virtuoso Server [6];

• searches for geospatial properties are supported by data-
base management systems with extensions for geogra-
phic information system (GIS), e.g., PostGIS [23], an
open source software program that adds support for ge-
ographic objects to the PostgreSQL object-relational
database [20];

• searches within text documents are supported by index-
based data stores, e.g., the scalable search solution
ElasticSearch [16] based on Apache Lucene [11].

In this paper, we will present an architectural layer on top of
these well-known search solutions. In particular, we will take
care of preserving their scalability aspects, like the search on
large sets of text documents. A data representation close to
RDF will be used within our architecture. However, there is
no need for using a particular data store for semantic data
(i.e., mostly a triple store) since our approach is agnostic
with respect to the backends used. Our main contribution
is an engineering approach for creating a scalable search so-
lution capable of conducting semantic search with geospatial
aspects as well as information retrieval from text documents.
The benefits of the different search systems are combined
and integrated in order to better deliver on the expectations
of the users.

4http://www.wolframalpha.com/
5https://www.apple.com/de/ios/siri/
6We assume that such properties are not directly modeled
in the underlying structured knowledge base.

The rest of the paper is organized as follows. Section 2
addresses related work while Section 3 describes general re-
quirements for our approach as well as its architecture. Sub-
sequently, we present our approach to search query repre-
sentation in Section 4 and introduce our approach to in-
terpreting search queries in Section 5. Section 6 describes
our federated search architecture, before giving concluding
remarks in Section 7.

2. RELATED WORK
Our approach is related to the research area of search over
Linked Data and thus to keyword search and question an-
swering (QA) over Linked Data. Several systems have been
developed for the latter task. One of the first systems was
AquaLog [19], an ontology-driven QA system for the Se-
mantic Web. Aqualog uses linguistic analysis to transform
the input query to a set of query-triples. Then, these query
triples are interpreted using lexical resources and the given
ontology. The interpreted query-triples are sent to an in-
ference engine to find the answer. One major drawback of
AquaLog is that it is limited to one ontology at a time.
To address this and other drawbacks of AquaLog, Power-
Aqua [18] was developed. PowerAqua follows an approach
similar to that of AquaLog, reusing AquaLog’s linguistic
analysis. However, PowerAqua performs more advanced
query-triple interpretation using different ontologies simul-
taneously.

Treo [7] is a method for querying Linked Data that re-
lies on spreading activation. First, pivot entities in the
query are identified. Then, from the dependency structure of
the input sentence, Treo constructs a Partially Ordered De-
pendency Structure (PODS). The PODS is used to resolve
the query in the spreading activation search step where se-
mantic relatedness scores are used to rank candidates and
subsequently spread activation. Pythia [29] is a more re-
cent QA system. It uses lexica that define mappings be-
tween a syntactic and a semantic representation of an ex-
pression. With these lexica, Pythia also introduces a distinc-
tion between ontology-dependent and ontology-independent
lexica. Whereas the former depends on the verbalizations
of entities from some ontology, the latter describe ontology-
independent expressions (determiners, question words,...).
The sentence is parsed using such lexica and the resulting se-
mantic representation is translated to a formal query. Build-
ing upon Pythia’s dichotomy between ontology-dependent
and -independent lexical entries, TBSL [28] presents a tem-
plate-based QA approach. This approach consists of 3 steps.
First, SPARQL query templates are generated by using do-
main-specific and generic language resources. The template
slots are filled by using a combination of resource lookup and
natural-language patterns extracted using the BOA frame-
work [9]. The resulting SPARQL queries are finally scored
and the best query (i.e., the highest ranking query that
returns a non-empty result set) is selected and returned.
More recently, several novel systems have participated in the
QALD-3 challenge on QA over Linked Data [3]. CASIA [12]
(the currently best-performing system on the QALD-3 bench-
mark dataset) relies on a three-step approach resembling
AquaLog’s architecture. During the first step, the question
type is determined and text triples are constructed from the
dependency parse tree of the question sentence. In the sec-
ond step, RDF resources which match phrases from the text

triples are detected. CASIA uses relation extraction pat-
terns from PATTY [21] to map text fragments to properties
and classes. In the final step, a SPARQL query is generated
based on the question type and the RDF resources detected
in the input question. CASIA achieves an F-score of 0.36 on
the QALD-3 benchmark.

Approaches on keyword-based querying of the Web of Data
include SINA [26] and the work of Tran et al. [27]. SINA [26]
aims at answering a keyword question using diverse datasets.
First, simultaneous disambiguation and segmentation is per-
formed using Hidden Markov Models (HMM) and the Hyper-
link-Induced Topic Search (HITS) algorithm. The found re-
sources are used to construct an Incomplete Query Graph
(IQG) consisting of disjoint sub-graphs. To build the fed-
erated SPARQL query that retrieves the results, the IQG’s
are connected using a Minimum Spanning Tree approach
inspired by Prim’s algorithm. The work of Tran et al. [27]
tackles the problem of keyword search over RDF data. More
specifically, the work of Tran et al. is concerned with map-
ping keywords to a list of ranked conjunctive queries, with
a special focus on efficient inference of implied connections.
To accomplish this, a top-k algorithm is proposed that com-
putes the best query interpretations of the keyword query
using bidirectional graph exploration. The interpretations
are then scored and mapped to conjunctive queries. The
performance of the proposed top-k approach is evaluated on
DBLP.

Generic frameworks for searching over RDF data have been
suggested in the past. For example, the OKBQA frame-
work7 presents a modular architecture for search over struc-
tured and unstructured sources. This architecture is yet not
fully instantiated and it is thus difficult to compare with our
approach.

Usbeck [30] presents a generic architecture for hybrid search
using a holistic framework comprising information extrac-
tion methods for unstructured [31] and semi-structured data
sources.Afterwards, the framework combines the underlying
heterogeneous data stores to answer keyword and natural
language queries via transforming each query into generic
SPARQL queries returning only the highest ranked results.

In contrast to the state of the art, we propose a generic
framework which integrates state of the art approaches for
search over both Linked Data, unstructured data and arbi-
trary APIs.

In [22] a federated SPARQL search engine–FedSearch– is
presented, which presents a hybrid combination of SPARQL
and full-text search tackling data heterogeneity and lack-
ing statistical data. Since SPARQL lacks full-text search
support the authors propose a triple-store-independent way
of querying different RDF stores such as OWLIM, Virtu-
oso and LuceneSail. Their vendor independent approach
of keyword query search pattern is evaluated next to several
optimizations against two benchmarks showing superior per-
forms against other state-of-the-art systems.

Meta-search engines (e.g., [17, 10]) are a different approach

7http://www.okbqa.org

for taking advantage of the power of different search services.
However, meta-search engines do not re-use intermediate re-
sults to refine parts of the search query, at the most they
improve the representation by re-ranking or clustering the
summarized search results (e.g., [2]).

Service-oriented architecture (SOA) [8, 24] can be seen as
an architectural pattern providing the needed tools for or-
ganizing the communication between distributed (software)
components [1]. The SOA manifesto8 prioritizes intrinsic in-
teroperability over custom integration, shared services over
specific-purpose implementations and flexibility over opti-
mization. Its main purpose is providing an infrastructure for
connecting loosely coupled components by defining processes
using dynamic component discovery and registration [5].

Thus, the goals of SOAs are close to the ones of Linked Data.
In contrast, SOA is interface-driven not data-driven like
Linked Data. In particular, it is not connected to SPARQL
or RDF. However, the concepts can be combined aiming for
the best of both worlds, e.g., as [34] has shown for the e-
learning domain.

3. HIGH-LEVEL ARCHITECTURE AND
GENERAL REQUIREMENTS

The concept of a service-oriented search framework poses
several specific requirements that have to be met to rea-
lize a corresponding architecture. They will be described in
the following. First of all, the framework has to ensure the
integrability of the various intended search functionalities,
which is derived from the properties of (extensible) service-
oriented architectures:

Requirement 1. An interface for search services has to
be defined. The definition has to comprise a summariza-
tion of all needed attributes for controlling the execution of
(sub)queries.

We focus on a generalized approach, especially w.r.t. the
communication across the diverse search services. Thus, we
demand:

Requirement 2. The communication with the search ser-
vices has to be stateless and transparent.

Derived from the required stateless and transparent commu-
nication, each search service has to encode all information
about itself via its interface ,i.e., in the message during the
communication9. Hence, the information about each search
service has be retrieved by querying the implemented in-
terface methods. However, to provide a structured search
query, an analysis of the textual user input is needed, which
we consider to be beyond the scope of this paper. We will
assume the search query is already available in a structured
representation (e.g., by having used approaches like [4, 19,
28]).

8http://soa-manifesto.org/
9This requirement is comparable to REStful communica-
tion [25] via the stateless HTTP protocol http://tools.
ietf.org/html/rfc7231.

unstructured
search query

search query
analyzer search query

interpreter

search query
interpreter

search query
interpreters

structured
search query

search results

N
E

S
W

Figure 1: High-level architecture of our distributed search framework.

Requirement 3. The search query requires a structured
representation which encapsulates information about all re-
levant parts of the search query.

Hence, the high-level infrastructure of a federated search
requires a two-step process:

1. search query analyzer

• input: unstructured search query

• output: structured search query

2. search query interpreter

• input: structured search query

• output: ranked search results

A graphical overview of the workflow is shown in Figure 1.
To achieve the intended service-oriented architecture, it is
crucial to hide the implementation details of the contained
search services [5]. As sketched in Figure 1, the structured
search query is the main carrier of information. Hence, no
knowledge about the behavior of a particular search service
may be contained in a structured search query, except in the
case that it was computed by a search service itself. This is
because the structured search query has to be independent
from the particular implementation of any search service
to ensure their exchangeability within the service-oriented
architecture. The following requirement is derived:

Requirement 4. The structured search query represen-
tation has to be independent from the implementation of any
particular search service.

In the following, we will describe the data structure required
for the representation of an analyzed search query.

4. SEARCH QUERY REPRESENTATION
Understanding what the user is looking for is the starting
point of every information retrieval process. Yet, in the
following section, the focus is not on the analysis of un-
structured search queries. Rather, search query analysis is
considered a black box, i.e., we focus on the representation
of the structured search query after analysis.

For our purpose, we build on a search query representation
that is close to RDF:

Definition 1 (RDF triples). Assume there are pair-
wise disjoint infinite sets I, B, and L representing IRIs10,
blank nodes, and RDF literals, respectively.

A triple (v1, v2, v3) ∈ (I ∪B)× I × (I ∪B ∪ L) is called an
RDF triple. We call v1 the subject, v2 the predicate and v3
the object. We denote the union I ∪B ∪L by T called RDF
terms.

However, we need a definition of the target resource. There-
fore, we allow a specific IRI to indicate the target elements,
i.e., our system performs a pure resource search. For the
sake of simplicity, we denote it as follows:

Definition 2 (Searched resource). The place hold-
er for the searched resource is denoted as urn:placeholder.

Obviously, this mechanism can be used for referencing dif-
ferent variables by adding any ID (e.g., urn:placeholder2).

For example, it is possible to express an actual search query,
e.g., family-friendly hotel in Leipzig in the following
way: Potential target hotels (urn:id:hotel) are restricted
to those being located in the city center of Leipzig (expressed
using the relation urn:rel:cityCenter). Furthermore, a
target hotel has to be marked (urn:rel:hasFeature) as
family-friendly (urn:id:familyFriendly) and the descrip-
tion of the hotel has to contain the word family-friendly.
The corresponding search query representation is shown in
Figure 2.

4.1 Search Query Tagging
Given the intention of using different search queries within a
federated search architecture connecting diverse search func-
tionalities, there is a need for separating a given search query
into smaller parts. These parts should be solvable by one
or more search services providing the best match to the re-
quired search functionality.

In accordance with Requirement 4, it is not allowed to en-
code the control of the execution directly within the rep-
resentation of a (sub-)query. Instead, the triples (i.e., sub-
queries) contained in the structured search query are as-
signed to every search service for annotation. That is, a sub-
query is annotated with (a) whether the given service is eli-
gible for interpreting the sub-query, (b) the estimated costs

10Internationalized Resource Identifier, i.e., a URI that may
contain any Unicode character (cf. http://tools.ietf.
org/html/rfc3987).

t1 urn:placeholder owl:typeof urn:id:hotel

t2 urn:placeholder urn:rel:citycenter urn:id:Leipzig

t3 urn:placeholder urn:rel:description urn:placeholder2

t4 urn:placeholder2 urn:rel:sublabel “family-friendly”

Figure 2: Example of a structured search query family-friendly hotel in Leipzig according to our RDF-like
representation.

t1 urn:placeholder owl:typeof urn:id:hotel (urn:service:triplestore,250,500)
t2 urn:placeholder urn:rel:citycenter urn:id:Leipzig (urn:service:gis,100,400)
t3 urn:placeholder urn:rel:description urn:placeholder2 (urn:service:triplestore,4000,1000)
t3 urn:placeholder urn:rel:description urn:placeholder2 (urn:service:fulltext,300,200)
t4 urn:placeholder2 urn:rel:sublabel “family-friendly” (urn:service:fulltext,300,200)

Figure 3: Example of an annotated search query family-friendly hotel in Leipzig.

for processing the sub-query and (c) the estimated number
of results. In particular, it is possible that a triple is tagged
by several search services. The annotation processes for a
given sub-query are started for each search service concur-
rently.

After this step, the triples contained in a structured search
query are annotated. Thus, the structured search query is
now defined as follows:

Definition 3. A set A of pairs (t, a) where t is a triple of
a search query Q and a is the annotation of a search service,
is called structured search query with annotations.

Note: It is possible that not all triples of Q are annotated
within A. However, without loss of generality, it is assumed
that all triples are tagged at least once.

To ensure performant computation of a query plan, an an-
notation is defined as follows:

Definition 4. A query annotation a is a triple (i, r, e),
where i is the IRI of the service, r is the estimated number
of results and e is the estimated execution time (in millisec-
onds).

This definition satisfies Requirement 3. Imagine a user wants
to pose the following query to our framework:

Example 1. family-friendly hotel in Leipzig

The annotated example query is shown in Figure 3. In this
example, urn:service:fulltext is an IRI of a service pro-
viding a full text search, urn:service:triplestore refer-
ences a triple store and urn:service:gis points to a search
service encapsulating a GIS server.

5. SEARCH QUERY INTERPRETATION
Given a structured and annotated search query, a reaso-
nable query plan for the eligible search services has to be
computed. This can be done by scheduling algorithms with

different optimization strategies. In this paper, we will focus
on the general requirements only.

Requirement 5. All triples of a structured and anno-
tated search query have to be interpreted by at least one
search service.

Note: As mentioned before, it is explicitly possible to have
a triple interpreted by more than one search service.

Hence, a query plan can be computed by creating a topolo-
gical order [14] of the graph defined by the triples (i.e., the

triple S P O is interpreted as S
P−→ O) of the structured

search query where the result node is the root node of the
graph. A straight-forward implementation is shown in Fi-
gure 4. There is numerous existing work dedicated to sched-
uler implementations [13, 15, 32]. A schedule graph is shown
in Figure 5 with respect to our running example.

6. FEDERATED SEARCH ARCHITECTURE
In this section, we present our federated search infrastruc-
ture. Particularly, it contains a service layer to which the
diverse search services can be connected.

6.1 Search Service Interface
For integration into the overall system, all search services
have to implement a specific interface that facilitates ex-
changeability. As a consequence, by implementing this given
interface, services can be loosely coupled to the service layer.
The search service interface is defined as follows:

interface SearchServ i c e {
/∗ annotat ion
∗ in : search query Q
∗ out : annotated search query A
∗/

A annotateQuery (Q) ;

/∗ query e x e c u t i o n
∗ in : annotated search query A
∗ out : search r e s u l t s R
∗/

R executeQuery (A) ;
}

/∗ compute t o p o l o g i c a l order o f the t r i p l e s o f the s t r u c t u r e d search query
∗ S P O i s i n t e r p r e t e d as d i r e c t e d edge S −> O with l a b e l P
∗ S ,O are i n t e r p r e t e d as nodes ∗/

A scheduleSubQuer ies (A){
List<node> r e s u l t L i s t // l i s t w i l l conta in the ordered r e s u l t s
Set<node> s t a r t S e t= findNodesWithoutIncEdges (A) // s e t wi th nodes wi thout incoming edges
int orderTag = 0 ;
while (! s t a r t S e t . isEmpty ()){

n = s t a r t S e t . pop () // removes a node
n . orderTag = orderTag++; // a s s i g n s c h e d u l e order
L . queue (n) // adds the node to the end o f the l i s t L
for (node m where (n ,m) in A){

remove (n ,m) from A
i f (no p e x i s t s with (p , m)){ // no ot her incoming edges f o r m

s t a r t S e t . push (m)
}

}
}
i f (hasEdges (A))

return e r r o r // graph has at l e a s t one c y c l e
else

return L // a t o p o l o g i c a l l y s o r t e d order
}

Figure 4: Exemplary scheduler implementation

urn:placeholder

urn:id:hotel

owl:typeOf

urn:id:leipzig

urn:rel:
citycenter

urn:placeholder2 urn:placeholder2

urn:rel:
description

urn:rel:
description

“family-friendly”

urn:rel:
sublabel

urn:rel:
sublabel

0 ← orderTag

1 2 3 4

5

Figure 5: Scheduled query plan after topological sorting.

It is common to call annotateQuery with a complete struc-
tured query Q to get a complete annotated query A of all
triples contained in Q. Yet, the executeQuery method of an
implementing search service is usually called passing only
the sub-query the service is eligible for (e.g., passing only
the property in Leipzig to the geospatial search service).
Eligibility of a service is decided by the scheduler.

6.2 Search Provider
The search provider is an interface for integrated search ser-
vices and defined as follows:

interface SearchProvider {
/∗ query e x e c u t i o n
∗ in : search query Q
∗ out : search r e s u l t s R
∗/

R executeQuery (Q) ;

/∗ search s e r v i c e r e g i s t r a t i o n
∗ in : IRI o f the search s e r v i c e
∗/

void r e g i s t e r (IRI) ;

/∗ d e r e g i s t e r a search s e r v i c e
∗ in : IRI o f the search s e r v i c e
∗/

void d e r e g i s t e r (IRI) ;
}

Hence, the search provider provides a method (executeQuery)
for been accessed from a client while it also works as direc-
tory server (similar to a UDDI server [33]). The directory
functionality is achieved by the register and deregister

methods allowing search services to connect and disconnect
from the search provider.

7. CONCLUSIONS
We presented an architecture for a distributed search follow-
ing the principles of service-oriented architectures. For this,
we introduced a descriptive data representation, i.e., the
data representation does not contain implementation details
of the underlying search services. Our implementation of
such a structured search query is based on RDF. After the
tagging process, the annotated structured search query can
be expressed using our RDF-like representation only.

Our main contribution is the proposed architecture’s ca-
pability of integrating and disintegrating (RDF unaware)
search services dynamically. This property is achieved by
the descriptive message format as well as the generalized ser-
vice interface, which allows for a stateless and transparent
communication with the integrated search services. Hence,
completely novel use cases are possible, in which search ser-
vice integration happens on-the-fly to facilitate more dy-
namic environments. Since the architecture is agnostic to
the functionality of the search services, it is possible to inte-
grate search services having not only (RDF-driven) semantic
search functionalities but also other specialized search capa-
bilities. For example, search services could comprise any
specialized search functionality like ElasticSearch (provid-
ing high-performance federated large-scale full text search),

or Web APIs encapsulating search functions with special se-
mantics like SoundCloud11 or Github12. Our approach is
superior as it does not burden these search services with the
interpretation of the complete RDF (or SPARQL) standard.
Moreover, the architecture is scalable by design in the sense
of the capability of integrating scalable and distributable
search services. Finally, our SearchProvider provides a gen-
eralized interface being capable of receiving search queries
via SPARQL (or any other representation, such as SQL or
SeRQL). Therefore, a consolidated view on the dynamically
summarized search services can be provided. This allows for
a transparent integration as a SPARQL endpoint, or using
any other data access standard.

In the future, we will evaluate the capabilities of our ar-
chitecture of providing rapid access to distributed data re-
sources by comparing an implementation of the architecture
to monolithic approaches. As possible data resources we
consider datasets of the Linked Open Data Cloud as well
as unstructured data provided by the Document Web in
general or private data sets with restricted accessibility (by
account or on the network level). Hence, providing persona-
lized search functionalities seems to be achievable.

Finally, the implementations are yet to be evaluated regard-
ing performance and (re-)ranking issues. In the context of
providing a distributed search, these are the main challenges
considering the user’s demands w.r.t. usability.

Acknowledgments We thank Didier Cherix and Lars We-
semann for their valuable support. This work has been
partly supported by the ESF and the Free State of Sax-
ony and by grants from the European Union’s 7th Frame-
work Programme provided for the project GeoKnow (GA
no. 318159).

8. REFERENCES
[1] M. Bell. SOA modeling patterns for service oriented

discovery and analysis. John Wiley & Sons, 2009.

[2] C. Carpineto and G. Romano. Optimal meta search
results clustering. In Proceedings of the 33rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’10,
pages 170–177, New York, NY, USA, 2010. ACM.

[3] P. Cimiano, V. Lopez, C. Unger, E. Cabrio, A.-C. N.
Ngomo, and S. Walter. Multilingual Question
Answering over Linked Data (QALD-3): Lab
Overview. In Information Access Evaluation.
Multilinguality, Multimodality, and Visualization,
pages 321–332. Springer, 2013.

[4] R. De Virgilio, A. Maccioni, and R. Torlone. A
similarity measure for approximate querying over
RDF data. In Proceedings of the Joint EDBT/ICDT
2013 Workshops, EDBT ’13, pages 205–213, New
York, NY, USA, 2013. ACM.

[5] T. Erl. SOA: principles of service design, volume 1.
Prentice Hall Upper Saddle River, 2008.

11https://developers.soundcloud.com/
12https://developer.github.com/

[6] O. Erling and I. Mikhailov. RDF support in the
Virtuoso DBMS. In Networked Knowledge-Networked
Media, pages 7–24. Springer, 2009.

[7] A. Freitas, J. G. Oliveira, S. O’Riain, E. Curry, and
J. C. P. Da Silva. Querying linked data using semantic
relatedness: a vocabulary independent approach. In
Natural Language Processing and Information
Systems, pages 40–51. Springer, 2011.

[8] Gartner Inc. Research note SPA-401-068, 12 April
1996, ”’service oriented’ architectures, part 1” und
SSA research note SPA-401-069, ”’service oriented’
architectures, part 2”, 1996.

[9] D. Gerber and A.-C. N. Ngomo. Bootstrapping the
linked data web. In 1st Workshop on Web Scale
Knowledge Extraction ISWC, 2011.

[10] A. Gulli and A. Signorini. Building an open source
meta-search engine. In Special interest tracks and
posters of the 14th international conference on World
Wide Web, pages 1004–1005. ACM, 2005.

[11] E. Hatcher, O. Gospodnetic, and M. McCandless.
Lucene in action, 2004.

[12] S. He, S. Liu, Y. Chen, G. Zhou, K. Liu, and J. Zhao.
CASIA@ QALD-3: A question answering system over
linked data.

[13] L. Ismail and L. Khan. Implementation and
performance evaluation of a scheduling algorithm for
divisible load parallel applications in a cloud
computing environment. Software: Practice and
Experience, 2014.

[14] D. E. Knuth. The Art of Computer Programming,
Volume II: Seminumerical Algorithms, 2nd Edition.
Addison-Wesley, 1981.

[15] S. Kuankid, A. Aurasopon, and W. Sa-Ngiamvibool.
Effective scheduling algorithm and scheduler
implementation for use with time-triggered
co-operative architecture. Elektronika ir
Elektrotechnika, 20(6):122–127, 2014.

[16] R. Kuc and M. Rogozinski. Elasticsearch Server.
Packt Publishing Ltd, 2013.

[17] U. Liebel, B. Kindler, and R. Pepperkok.

âĂŸharvesterâĂŹ: a fast meta search engine of human
protein resources. Bioinformatics, 20(12):1962–1963,
2004.

[18] V. Lopez, E. Motta, and V. Uren. Poweraqua: Fishing
the semantic web. In The Semantic Web: research and
applications, pages 393–410. Springer, 2006.

[19] V. Lopez, V. Uren, E. Motta, and M. Pasin. Aqualog:
An ontology-driven question answering system for
organizational semantic intranets. Web Semant.,
5(2):72–105, June 2007.

[20] B. Momjian. PostgreSQL: introduction and concepts,
volume 192. Addison-Wesley New York, 2001.

[21] N. Nakashole, G. Weikum, and F. Suchanek. PATTY:
a taxonomy of relational patterns with semantic types.
In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pages
1135–1145. Association for Computational Linguistics,
2012.

[22] A. Nikolov, A. Schwarte, and C. Hütter. FedSearch:
Efficiently combining structured queries and full-text

search in a SPARQL federation. In The Semantic
Web–ISWC 2013, pages 427–443. Springer, 2013.

[23] R. Obe and L. Hsu. PostGIS in action. Manning
Publications Co., 2011.

[24] Organization for the Advancement of Structured
Information Standards. Reference model for service
oriented architecture 1.0,committee specification 1,
2006.

[25] L. Richardson and S. Ruby. RESTful web services. ”
O’Reilly Media, Inc.”, 2008.

[26] S. Shekarpour, A.-C. Ngonga Ngomo, and S. Auer.
Question answering on interlinked data. In Proceedings
of the 22nd international conference on World Wide
Web, pages 1145–1156. International World Wide Web
Conferences Steering Committee, 2013.

[27] T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k
exploration of query candidates for efficient keyword
search on graph-shaped (RDF) data. In Data
Engineering, 2009. ICDE’09. IEEE 25th International
Conference on, pages 405–416. IEEE, 2009.

[28] C. Unger, L. Bühmann, J. Lehmann, A.-C.
Ngonga Ngomo, D. Gerber, and P. Cimiano.
Template-based question answering over RDF data. In
Proceedings of the 21st International Conference on
World Wide Web, WWW ’12, pages 639–648, New
York, NY, USA, 2012. ACM.

[29] C. Unger and P. Cimiano. Pythia: Compositional
meaning construction for ontology-based question
answering on the semantic web. In Natural Language
Processing and Information Systems, pages 153–160.
Springer, 2011.

[30] R. Usbeck. Combining linked data and statistical
information retrieval - next generation information
systems. In V. Presutti, C. d’Amato, F. Gandon,
M. d’Aquin, S. Staab, and A. Tordai, editors, ESWC,
volume 8465 of Lecture Notes in Computer Science,
pages 845–854. Springer, 2014.

[31] R. Usbeck, A.-C. Ngonga Ngomo, S. Auer, D. Gerber,
and A. Both. AGDISTIS - Agnostic Disambiguation of
Named Entities Using Linked Open Data. In
International Semantic Web Conference. 2014.

[32] J. Vilaplana, F. Solsona, J. Mateo, and I. Teixido.
SLA-aware load balancing in a web-based cloud
system over openstack. In Service-Oriented
Computing–ICSOC 2013 Workshops, pages 281–293.
Springer, 2014.

[33] A. E. Walsh, editor. Uddi, Soap, and Wsdl: The Web
Services Specification Reference Book. Prentice Hall
Professional Technical Reference, 2002.

[34] H. Q. Yu, S. Dietze, N. Li, C. Pedrinaci, D. Taibi,
N. Dovrolls, T. Stefanut, E. Kaldoudi, and
J. Domingue. A linked data-driven & service-oriented
architecture for sharing educational resources. 2011.

