
QFed: Query Set For Federated SPARQL Query Benchmark

Nur Aini Rakhmawati
INSIGHT Centre, National

University of Ireland
National University of Ireland,

Galway
nur.aini@deri.org

Muhammad Saleem
Universität Leipzi

IFI/AKSW, PO 100920,
D-04009 Leipzig

saleem@informatik.uni-
leipzig.de

Sarasi Lalithsena
Kno.e.sis Center

Wright State
University,Dayton, OH, USA

sarasi@knoesis.org

Stefan Decker
INSIGHT Centre

National University of Ireland,
Galway

stefan.decker@deri.org

ABSTRACT

The increasing attention for federated SPARQL query sys-
tems emphasize necessity for benchmarking systems to eval-
uate their performance. Most of the existing benchmark
systems rely on a set of predefined static queries over a par-
ticular set of data sources. Such benchmark are useful for
comparing general purpose SPARQL query federation sys-
tems such as FedX, SPLENDID etc. However, special pur-
pose federation systems such as TopFed, SAFE etc. cannot
be tested with these static benchmarks since these systems
only operate on a specific data sets and the corresponding
queries. To facilitate the process of benchmarking for such
special purpose SPARQL query federation systems, we pro-
pose QFed, a dynamic SPARQL query set generator that
takes into account the characteristics of both dataset and
queries along with the cost of data communication. Our
experimental results show that QFed can successfully gen-
erate a large set of meaningful federated SPARQL queries
to be considered for the performance evaluation of different
federated SPARQL query engines.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms

Theory

Keywords

Linked Data, Data Integration, Federation SPARQL Query

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS ’14 Hanoi, Vietnam
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
Over the last years, the Web of Data has grown signif-

icantly and currently comprise of over 2000 data sources1

from diverse domains. Consequently, SPARQL query feder-
ation approaches [15, 5, 1, 17, 11] has gained a significant
importance to collect data from these globally distributed
Linked Data sources. General purpose SPARQL query fed-
eration systems (e.g., [15, 5, 1] etc.) have been actively
used for SPARQL query federation over multiple SPARQL
endpoints (Linked Data storage servers). Beside these, spe-
cialised federation systems which are optimized for a specific
use-case or data set (e.g., TopFed2 [9, 10], SAFE3 etc.) has
gain a considerable attention as well. On the other hand,
FedBench [13, 14] has been developed to compare and posi-
tion such systems. While Fedbench are useful to test gen-
eral purpose SPARQL query federation systems, it cannot
be used for the performance evaluation of specialized fed-
eration systems. This is because this benchmark comprises
of predefined queries and a set (can be singleton) of data
sources which may be completely irrelevant for the special-
ized federation system in hand. For example, TopFed [9,
10] is a specialized federation system, particularly designed
for Linked Cancer Genome Altas (LTCGA4) [10] data set .
However, to the best of our knowledge, non of the existing
SPARQL query federation benchmarks include LTCGA data
set and queries. Similarly, SAFE is developed for SPARQL
query federation over Linked statical data using RDF Dat-
aCube vocabulary and thus it is essential to test this system
with RDF DataCube data sets and corresponding SPARQL
queries. In a nutshell, to test such specialized systems, we
need a dynamic query generator which can generate a vari-
ety of federated SPARQL queries over the given set of data
sources.

To this end, we propose QFed, a dynamic query set gener-
ator for federated SPARQL query benchmarks that takes
into account both key characteristics of the dataset and
SPARQL queries which has a direct impact on the perfor-

1LOD Stats: http://stats.lod2.eu/
2TopFed federation engine: https://code.google.com/p/
topfed/
3SAFE federation engine: http://linked2safety.hcls.
deri.org:8080/SAFE-Demo/
4Linked TCGA: http://tcga.deri.ie/



mance evaluation of federated engines. QFed considers key
SPARQL query characteristics such as the number of sources
the query span (i.e, collect results), the type of triple pat-
tern joins (star, path, hybrid [12]), use of different SPARQL
clauses, the number of query triple patterns, and shared vari-
ables, etc. for SPARQL query generation. Characteristics
of the dataset include the distributions of classes and prop-
erties, the frequencies of classes and properties, the number
of sources, and the network cost etc [8]. Our evaluation
shows QFed is successfully able to generate a large set of
meaningful federated SPARQL queries for a given set of in-
terlinked data sets. Selected queries can then later be used
for the performance evaluation of any general or specialized
SPARQL query federation engine.
In the remainder of this paper starts with reviewing re-

lated works in Section 2. Then we explain the query set
generation in Section 3. The system is evaluated in Sec-
tion 4 with concrete proposed metrics, query set, a dataset
and system . Finally, we conclude it in Section 5.

2. RELATED WORKS
FedBench [13], to the best of our knowledge, is the only

SPARQL query federation benchmark that encompass real
queries (i.e., showing typical requests) spanning (collects
data) over multiple real datasets. DAW [12] provides a set
of static queries5 based on characteristics of BSBM (Berlin
SPARQL Benchmark) queries [4] from four6 public datasets.
These queries cover most of SPARQL operators and key-
words. However, all the queries are statically generated thus
cannot be used for specialized federation systems. Further-
more, these queries are simple in complexity (maximum of
4 triple patterns per query). SPLODGE [6] offers a tool
that can generate a query set based on query structural,
complexity, and cardinality constraints. LidaQ [16] also
produces queries based on three main shapes (entity, star
and path shapes) for federated queries benchmark. The star
shape in Lidaq and Splodge is a local join subject-subject
pattern which combines triple patterns in a single source.
Both SPLODGE and LidaQ rely on the interlinks between
datasets such as owl:sameAs, rdfs:seeAlso, etc. Since not all
entities are interlinked with each other, we propose a query
set generator which also uses objects and subjects compar-
isons between two or three sources without only relying on
interlinkings between datasets. We will detail the differences
among QFed, Splodge and Lidaq in Table 1.
[7] and [6] provide a list of query requirements for bench-

marking federated SPARQL queries such as number of sources
involved, complexity, selectivity/result size, general predi-
cate (e.g rdfs:label, rdf:type), shape, variable position etc.
Except for variable position, our query generator takes into
account all the query requirements. With respect to commu-
nication cost, we add object value types (URI, blank-node
or a literal) as one of requirements. The number of charac-
ters of a literal object can be a lot higher than the number
of characters of an URI object. Consequently, querying such
literal objects can lead to increased bandwidth usage. Fur-
thermore, it can reduce the speed of the query execution, if
the data sent or received is over the network capacity.

3. QUERY SET GENERATION
5https://sites.google.com/site/dawfederation/queries
6https://sites.google.com/site/dawfederation/data-sets

This section explains the foundations of federated SPARQL
query processing. After that, we describe our methodology
to generate a query set in Section 3.2.

3.1 Background
We provide a definition of the federated SPARQL query

framework to formalize our queries generation method. In a
nutshell, the federated SPARQL query framework consists
of a federated engine as a mediator and a set of RDF sources.
As the mediator, a federated engine plays an important role
to distribute query to the most relevant sources [2]. Each
source is normally accessed via a SPARQL endpoint and
contains a set of triple statements which break down into
three components: subject, predicate and object. Those
components can be either an URI, literal or blank-node. Let
U be the set of all URIs, L be the set of all literals and B

be the set of all blank nodes. Then a triple t can be for-
mally defined as t = (s, p, o) ∈ (U ∪ B)× U × (U ∪ L ∪ B).
An entity is part of a dataset if it can be described by a
triple that contains rdf:type predicate. An entity might be
connected to other entities that are located in other sources.
For instance, Figure 1 describes a relation between three
entities: siderdrug:450(Femring) in the Sider dataset, disea-
some:382(Estrogen Resistance) in the Diseasome datset and
dailymeddrug:363(Vivelle) in the Dailymed dataset. The
oval shape represents a URI or a blank node and the rectan-
gle shape depicts a literal. Those components are connected
by the predicates (arrows). According to Figure 1, sider-
drug:450 is a subject, siderdrug:drugName is a predicate
and Vivelle is a literal object. One of interlinked entities
is shown that dailymeddrug:363 is linked to diseasome:382
via the dailymed:possibleDiseaseTarget predicate. In gen-
eral, those links are useful for federated query processing
from multiple sources.

3.2 Methodology
We deploy the following method for generating queries:

Given a set of sources, we create query templates based on
particular join patterns. Since we don’t only want to create
a join between sources, we also span the query by adding
more triple patterns. In order to add those triple pattern
and to take into account the cost of data communication,
we utilize two predicate selection strategies: properties dis-
tribution not considered and properties distribution consid-
ered. In addition, we use big literal objects values (explained
in Equation 2) to increase the communication cost. Further-
more, in order to change the selectivity value of a query, we
cover two widely used keywords: FILTER and OPTIONAL
and analyse the effect of those keywords on the data commu-
nication cost. In summary, our query set generation steps
are described as follows:

1. We calculate the occurrences and frequencies of classes
and properties as two relevant parameters for query set
generation (Section 3.3)

2. We identify the list of joins that can be found between
two entities at two different sources based on subject-
object join pattern, subject-subject join pattern and
object-object join pattern. After that, we create query
patterns between two entities which form that join pat-
tern.



siderdrug:450

dailymeddrug:363

diseasesome:382

sider:drug
dailymed:drug

diseaseome:disease

rdf:type

rdf:type

rdf:type

 "Femring"

rdfs:label

 "Vivelle"

sider:drugName

dailymed:name

"Vivelle (Patch, Extended Release)"

rdfs:label

"dosage...."

dailymed:possibleDiseaseTarget

dailymed:dosage

"Estrogen resistance"
rdfs:label

dailymedingredient:estradiol

dailymed:activeIngredient

diseaseClass:Endocrine diseasesome:class
1

diseasesome:size

Sider Dailymed

Diseasome

Figure 1: Dataset Example

3. We add more query patterns to create a star shape
where the second entity from the previous step become
the centre of the shape. The star shape is useful to re-
trieve a list of information related to the second entity.
The query patterns consist of a URI and a literal ob-
ject value. The predicates of the query pattern are
selected based on two methods that will be explained
in Section 3.5.

3.3 Data Preprocessing
We pre-process all datasets involved before the query set

generation to obtain the characteristics of the datasets. We
calculate the occurrences of classes and predicates regardless
of the frequencies of classes and predicates in each source.
The occurrence calculation aims to see how the predicate
and class are spread across the datasets; as a federated en-
gine — the query mediator — generally exploits a data cata-
logue which contains a list of predicates and classes. In other
words, occurrence in this work is related to the distribution
of class and property. Based on our previous work [8], if the
classes and predicates are distributed over the dataset, the
federated engine will send a request to more than one dataset
for detecting the most relevant sources for a sub query. In
addition, we compute the total frequencies predicates and
classes in the datasets since they are highly associated with
the number of intermediate results that are received by the
federated engine during query execution.

Definition 1. Let D = {d1, d2, · · · , dn} be a set of sources
that are used in the federation framework, P be a set of
known predicates and C being a set of known classes. Then
the occurrence Op(p,D) of predicates p ∈ P in the dataset D
is computed as Op(p,D) =

∑

d∈D
Op(p, d), where Op(p, d)

is a function that returns 1 if there exists one or more triple
with predicate p in source d, otherwise it returns 0. The
frequency fp(p,D) of predicate p in the dataset D is defined

as

fp(p,D) =
∑

d∈D

∑

t∈d

{

1 if ∃s, o : t = (s, p, o)
0 otherwise

And the occurrence Oc(c,D) of class c ∈ C is calculated
as Oc(c,D) =

∑

d∈D
Oc(c, d). Similar to Op(p,d), Oc(c,d)

is a function that returns 1 if there exists one or more triple
with class c, otherwise it returns 0. The frequency fc(c,D)
of class c in the dataset D is defined as

fc(c,D) =
∑

d∈D

∑

t∈d

{

1 if ∃s : t = (s, rdf : type, c)
0 otherwise

Consider Figure 1 as a dataset example, the Op(rdfs :
label,D) and fp(rdfs : label,D) equal to three, while the
Oc(dailymed : drug,D) and fc(dailymed : drug,D) equal
to one.

3.4 Query Join Pattern Types
In order to generate a SPARQL query template, we intro-

duce the SPARQL query definition. A SPARQL query is a
set of Basic Graph Patterns (BGP )=(U∪V )×(U∪V )×(U∪
L∪V ) where V is a set of all variables . A BGP might share
one or more of the same variables with other BGP either in
the subject, predicate or object position. These shared vari-
ables create AND join inter BGPs. There are six types of
join triple patterns based on the position of the variable in
the pattern: Subject-Subject, Predicate-Predicate, Object-
Object, Subject-Predicate, Subject-Object, and Predicate-
Object. We only consider Object-Object, Subject-Subject,
Subject-Object join types since the joining shared variable in
the predicate position is rarely used in real world queries [3].

3.4.1 Subject-Object

In federated SPARQL queries, the Subject-Object join
pattern is normally used for discovering a relationship be-
tween two datasets. This join pattern exploits the links
amongst datasets which are generated by publishers with



predicates such as owl:sameAs and dailymed:possibleDiseaseTarget
in Figure 1. In the context of the federated SPARQL query,
a link refers to a predicate which join two entities that are
located in different sources.

Definition 2. Given sources d, d′ ∈ D, the set of triples
L(d, d′) in source d which contains a link that joins entity s
in source d to entity s’ in source d’ can be formally defined
as follows:
L(d, d′) = {(s, p, s′)|∃(s, p, s′) ∈ d ∧ s′ ∈ U ∧ ∃(s′, p′, o′) ∈

d′ ∧ d 6= d′}

Once we obtain the link p between entity s and entity s′

from different sources, we add two triple patterns to create
a star shape where the entity s′ in source d′ is the center
of this star shape. For each entity s′ in the L(d, d′), we
fetch the list of the predicates of the entity s′ along with its
objects in other source d′ (PObjType(s′, d′)). A strategy for
choosing which triple patterns should be added in the query
will be described later in Section 3.5.

PObjType(s, d) = {(p, typef(o, d))|∃(s, p, o) ∈ d∧p 6= rdf : type}
(1)

where typef(o,D) is a function to decide the type of object
value which is defined as follows:

typef(o,D) =







u if o ∈ U

l if o ∈ L ∧ length(o) < avgl(D)
bl otherwise

(2)
As shown in Equation 2, the big literal object (bl) is a

literal which has length of more the average number charac-
ters in the literal objects in the dataset(avgl(D)). u and l

denote URI object and literal object respectively. The moti-
vation of adding big literal object value in the query pattern
is to asses how optimize a federated engine to deal with the
cost of data communication and the restriction of SPARQL
Endpoint.
For subject-object joins, we provide two templates: 1)

joining two classes (Figure 2(a)), and 2) joining an entity
with a class (Figure 2(b)). The first query template is a low
selectivity query because it maps the all entities that belong
class uc1 in source d to all the entities in the source d′. uc1
is one of classes in source d. The following query pattern is
an example of the first query template which join all entities
in class dailymed:drug with entities in diseasome:disease.

? s1 a dailymed : drugs .
? s1 dailymed : po s s i b l eD i s ea s eTarge t ? s2 .
? s2 diseasome : c l a s s ?URI .

We only generate the first query template if we find a link
that occurs in more than one triples belonging to the same
class, but belonging to different entities. According to [3],
Constant subject-Constant predicate-Variable Object is widely
used in DBPedia queries. Therefore, we also create the sec-
ond query template with the aim of joining an entity in a
source to other class in other sources.

dailymeddrug :363 dailymed : po s s i b l eD i s ea s eTarge t ?
s2 .

? s2 diseasome : c l a s s ?URI .

The above query patterns presents the second template that
connects entity dailymeddrug:363 to all entities in disea-
some:disease. We then append two triple patterns contain-
ing URI object variables (?u) and literal object variables

(?l) in the first query template. Since the second query
template join is a high selectivity query, we add big literal
object variables (?bl) rather than literal object variable (?l)
if we discover the big literal object.

?u

uc1

?u

P1

P2
P3

?u ?l

P4

(a) Join two classes in the

Subject-Object Join Pattern

u ?u

uc1

P2

P1 P4P3

?u?bl/l

(b) Join an entity with a class

in the Subject-Object Join Pat-

tern

u

uc2?u

P1

P2

P3

P5
?u

P4

?u/l

?l

?u
P6

(c) Hybrid Join Pattern

?u
P1

P2

?u

P3

?u/l

?l/bl

(d) Join two datasets with a

Subject-Subject Join Pattern

?u uc1

uc2

?u

P1

P3

P2

P4

P5

?u

P6

?l

?u/l

(e) Join two classes in the

Object-Object Join Pattern

u

uc2?u

P1

P2

P3

P4

?u

P5

?u/l

?bl/l

(f) Join an entity with a class

in the Object-Object Join Pat-

tern

Figure 2: Federated Query Templates

3.4.2 Object-Object

In order to deal with the problem of unavailability of
interlinks amongst sources, we also generate a query that
merges two sources by using object comparison. We create
an object-object join pattern from two sources where two
triple patterns share the same variable. We initially con-
struct a list of quadruples OO(D) that consists of a subject
object pair located in a single source and a subject object
pair from another source that have the same object value.

Definition 3. Let D be a finite set of sources in the
query federation frameworks, the list of quadruple for cre-
ating object-object join pattern can be formulated as:

OO(D) =
⋃

d,d′∈D
{(s, p, s′, p′)|(s, p, o) ∈ d ∧ (s′, p′, o) ∈

d′ ∧ d 6= d′}

Like the Subject-Object join pattern, we propose two query
templates that join two classes from different sources and
join an entity in a source to a class in another source. Those
two query templates also use the PObjType(s, d) function
to find other triple patterns that are associated with entity
s′. Later on, the outcome of PObjType(s′, d′) is chosen to
be added to the query.



3.4.3 Subject-Subject

Having the same subject located in multiple sources nor-
mally happens when a source is divided into several par-
titions due to a special reason such as data clustering. A
subject-subject join pattern is usually used for smushing
data which has the same identifier. To begin with, we cre-
ate a list of subjects that are located in multiple sources as
follows:

Definition 4. Let D be a finite set of sources in the fed-
eration frameworks, the list of subjects for creating subject-
subject join pattern can be formulated as:
SS(D) =

⋃

d,d′∈D
{s|(s, p, o) ∈ d ∧ (s, p′, o′) ∈ d′ ∧ d 6= d′}

Figure 2(d) illustrates a query template for Subject-subject
join pattern that links two different datasets. All of the
query patterns share the same subject variables. The first
query pattern is obtained from the first source (?u p ?u/l),
and the rest of the query patterns are obtained from the
second source. Similar to the subject-object join pattern
and object-object join pattern, we utilize PObjType(s, d)
function to add the query patterns for all of the subjects in
SS(D).

3.4.4 Hybrid Join

The aforementioned query templates only integrate two
sources. Hence, we combine the object-object join pattern
query template and subject-object query template. In the
first step, we create a similar query template to the path
that joins an entity to a class in the object-object template
(Figure 2(b)). Then, we iterate each predicate of s′ in the
PObjType(s′, d′) to find the predicate that also belongs to
DL(D).

Definition 5. Let D be a set of sources in the federation
frameworks, a set of predicates DL(D) that links an entity
in source d to an entity in another source d′ in dataset D is
formulated as:
DL(D) = {p|(s, p, o) ∈

⋃

d∈D

⋃

d′∈D
L(d, d′)}

In order to avoid the reciprocal query to the first source,
we reject a predicate whose object equals to entity s which is
the subject of the first source . Let s′′ be an object of a triple
in source d′ whose predicate is an element ofDL(D), then we
look up the list of predicates that belongs to s′′ in the source
d′′ by using PObjType(s′′, d′′). In the final step, we do the
same procedure (Section 3.5) to select a predicate that will
be the part of the last query triple pattern. For the last
query pattern, we only choose a predicate with the literal
object value or URI object value to reduce the complexity
of the query.

3.5 The Predicates Selection
The objective of the predicate selection is to find suitable

predicates that will be one component of triple query pat-
terns added to the query. We propose two approaches for
predicate selection: 1) properties distribution not considered
(ND) 2) properties distribution considered(D). In the first
approach, we just do an iteration for each pair of the predi-
cate and its object type for entity s in PObjType(s, d). The
iteration will stop once we get a predicate with URI object
value and a predicate with literal object value. In the case
of enabled big literal options, we iterate PObjType(s, d) un-
til we discover a predicate with the big literal object value

and a predicate with the URI object value. If we can-
not find a predicate with the big literal object value, we
choose a predicate with literal object value instead. For
instance, we create a subject-object query from Dailymed
and Diseasome sources based on data in Figure 1. The re-
sults of L(Dailymed,Diseasome) is (dailymeddrug : 363,
dailymed : possibleDiseasetarget, diseasome : 382). Then,
we find all predicates that belong to diseasome:382 by using
PObjType(diseasome : 382, Diseasome). Suppose we ob-
tain (diseasome:size,l), (rdfs:label,l), (diseasome:class,u) se-
quentially, we only choose diseasome:size and diseasome:class.
The rdfs:label is not selected since its position is after dis-
easome:size. As a result, we generate Query 1.

Query 1: Example of a Subject-Object Join Pattern
Query
select ∗ { ? s1 a dailymed : drugs .
? s1 dailymed : po s s i b l eD i s ea s eTarge t ? s2 .
? s2 diseasome : c l a s s ?URI .
? s2 diseasome : s i z e ?LITERAL . }

Query 2: Example of a Object-Object Join Pattern
Query
select ∗ { ? s1 a s i d e r : drug .
? s1 s i d e r : drugName ?o .
? s2 a dailymed : drugs . ? s2 dailymed :Name ?o .
? s2 dailymed : a c t i v e I n g r ed i e n t ?URI .
? s2 dailymed : dosage ?BIGLITERAL . }

The second approach chooses the predicate p with the high-
est occurrence Op(p,D) since federated engines generally ex-
ploit a data catalogue that contains the list of predicates to
select the relevant source of a query. Using predicates that
are distributed over the dataset will increase the data com-
munication cost between the federated engine and SPARQL
endpoints [8]. To consider this example, we create a feder-
ated query by implementing an object-object join pattern
from Sider and Dailymed sources in Figure 1. The OO(D)
produces (siderdrug : 450, sider : drugName, dailymeddrug :
363, dailymed : Name) since sider:drugName and daily-
med:Name have the same objects value (Vivelle). As the
next step, we find all predicates and their type for entity dai-
lymeddrug:363 (PObjType(dailymeddrug : 363, Dailymed)).
We get PObjType(dailymeddrug : 363, Dailymed) = {(dailymed :
activeIngredient, u), (rdfs : label, l), (dailymed : dosage, bl),
(dailymed : possibleDiseaseTarget, u)}. In this query gen-
eration, we pick dailymed:activeIngredient and dailymed:dosage,
since we consider the predicate occurrence and the big lit-
eral option. Although rdfs:label occurrence is higher than
dailymed:dosage, dailymed:dosage is preferred rather than
rdfs:label since we give higher priority to the predicate with
the big literal than the predicate with the higher predicate
occurrence.

In the next example, we extend our previous federated
query example to create a hybrid join query. One element
of PObjType(dailymeddrug : 363, Dailymed) is dailymed :
possibleDiseaseTarget which is also a predicate that points
to diseasome:382 at Diseasome source. Therefore, we can
create a subject-object join pattern by employing dailymed :
possibleDiseaseTarget. As shown in the first example, we
retrieve values of PObjType(diseasome : 382) = {(diseasome :
size, l), (rdfs : label, l), (diseasome : class, u)}. SinceOp(rdfs :



label) is greater thanOp(diseasome : size) andOp(diseasome :
class), we choose rdfs:label be the predicate for the triple
pattern with URI object value. Note that, for the hybrid
join, we disregard the type of object value. Furthermore,
in order to simplify the query, we do not select a predicate
with the big literal value .
The last example is a subject-subject join pattern fed-

erated query. Suppose that the related triples with daily-
meddrug:363 as the subject that are located in two differ-
ent sources, dailymeddrug:363 dailymed:name ”Vivelle” is in
the first source and the rest of the triples are in the second
source. If we also consider big literal value as one of the
parameters, then we can create Query 3.

Query 3: Example of a Subject-Subject Join Pattern
Query
select ∗ {
? s dailymed :Name ?LITERAL .
? s dailymed : po s s i b l eD i s ea s eTarge t ?URI .
? s dailymed : dosage ?BIGLITERAL . }

Query 4: Example of a Hybrid Join Pattern Query
select ∗ {
diseasome :382 s i d e r : drugName ?o .
? s2 a dailymed : drugs . ? s2 dailymed :Name ?o .
? s2 r d f s : l a b e l ?LITERAL .
? s2 dailymed : po s s i b l eD i s ea s eTarge t ? s3 .
? s3 r d f s : l a b e l ?LITERAL3 . }

Query 5: Example of a Federated SPARQL Query
Using FILTER and OPTIONAL Keywords
select ∗ { ? s1 a dailymed : drugs .
? s1 dailymed : po s s i b l eD i s ea s eTarge t ? s2 .
? s2 diseasome : c l a s s ?URI .
OPTIONAL{ ? s2 diseasome : s i z e ?LITERAL . }
FILTER (?LITERAL >= 1) }

3.6 Query set Generation Extension

3.6.1 query set Threshold

Since the number of entities is quite large, we limit the
number of queries based on two parameters: the frequency
of predicates (fp(p,D)) and number of entities for each class.
The goal of the first parameter is to take a subset of L(d, d′)
, OO(D) or SS(D) that will be processed in the query gen-
eration. The subset consists of the top-K predicates with the
highest fp(p,D). We span the results of the first parameter
into several query generations. However, we give the second
parameter as a constraint to limit the number of entities of
each class. We restrict only n entities for each class with the
same predicates to be generated since several entities in the
same class may have the same predicate, which is also part
of L(d, d′) or OO(D).

3.6.2 OPTIONAL, FILTER and SERVICE Keywords

A predicate that belongs to an entity does not always
belong to another entity, even when they are in the same
classes. In order to retrieve more query results, we provide
the OPTIONAL keyword that is inserted in the one of triple
patterns that is associated to entity s′. The OPTIONAL

and FILTER keyword are only applicable for joining inter-
classes query templates (Figure 2(a) and 2(e)) since those
two templates cover all entities in the same class. For FIL-
TER keywords, we only apply it in the query that contains
a literal with integer value. To find the constraint value for
a FILTER expression, we choose the median value of a set of
literal answers. Then, we use the greater than sign or equal
to (≥) in the FILTER expression. The example of query
using OPTIONAL and FILTER keywords can be found in
Figure 5.

The SPARQL 1.1 standard is supported in most of SPARQL
endpoint servers. We can execute federated SPARQL queries
by employing SERVICE keywords in SPARQL 1.1. There-
fore, we also provide a query that contains SERVICE key-
word to asses the federated engine that supports SPARQL
1.1 feature. This implies that our query can be executed
in the federated engine that does not support transparent
query interface.

3.7 Comparison of Splodge, Lidaq and QFed
Table 1 compares the features and capabilities of QFed,

Lidaq and Splodge based on seven dimensions. QFed creates
three join patterns (S-S,O-O,S-O), while Lidaq and Splodge
only provide subject-object join patterns. Note that, Lidaq
and Splodge also provide other patterns but these patterns
are a local join pattern which does not join entities between
different datasets. Splodge generates unlimited triple pat-
terns that depends on number of sources involved. Both
Splodge and QFed generate queries that only contain bound
predicates. QFed does not only generate query patterns,
but it also extends the query by adding SPARQL keywords
which may influence the number of intermediate results.
Further, QFed takes into account the type of object val-
ues (URI, Literal, Big Literal). The selectivity value is use-
ful for choosing a predicate that will be added in queries
that are generated by Splodge and QFed. Both Splodge and
QFed take into account how many sources are involved in
a query. As shown in that table, those query generators
produce different queries. Hence, in our evaluation, we will
not compare the performance of those query generators in
producing queries.

4. EVALUATION
The objective of our evaluation is to show that our queries

generated can return results and involve more than one data
source. Furthermore, we demonstrate the effect of the big
literal object value, the predicate occurrence, FILTER and
OPTIONAL keywords on the performance of federated en-
gines.

4.1 Experimental Setup
This section describes the evaluation system for running

our query set on the federated engines. The code for gen-
erating the queries can be found at https://github.com/

nurainir/QFed.

4.1.1 Dataset

Our dataset consists of four life science datasets: Daily-



Lidaq Splodge QFed
Join pattern between different datasets S-O S-O S-S,O-O,S-O
Maximum Triple patterns 3 unlimited 6
Predicate Unbound and

Bound predicates
Bound predi-
cate

Bound predicate

Keywords Supported ✗ ✗ Filter, Optional,
Service

Object value types ✗ ✗ Literal, URI
Selectivity ✗ X X

Number of sources ✗ X X

Table 1: Features and Capabilities of QFed, Lidaq and Splodge. S=Subject,O=Object

med7, Drugbank8, Diseasesome9 and Sider10. These datasets
are interlinked with each other using a number of predicates.
Additionally there are many of the same object values that
can be found from different datasets which can be used for
creating federated SPARQL queries such as rdfs:label, dai-
lymed:name and drugbank:interactionDrug1. Due to the
unavailability of triples with the same subject at different
datasets, we divide the Drugbank dataset into two parti-
tions. We distributed the triples that are related to class
Drug to all partitions evenly. We then add the triples that
contain class drug interactions, references and Enzim to par-
tition one, and add the rest of the triples to partition two.
In total, we have 5 SPARQL endpoints for accessing five
data-sources.

4.1.2 System

We set up five Fuseki11 engines to a Linux virtual machine
for storing four datasets. We bound Fuseki to five different
ports. In a separate virtual machine, we installed FedX[15]
and Fuseki as the federated engines. Notice that, we do
not compare the performance of Fuseki and FedX. We run
queries containing SERVICE keyword on Fuseki, whereas
the query without the SERVICE keyword is executed on
FedX. The FedX is chosen as the federated engine since it is
able to support most of the operators and keywords in the
SPARQL 1.1.

4.1.3 Metrics

We assess the performance of FedX and Fuseki based on
the following metrics: data transmission, and run time. The
data transmission refers to the amount of data sent and
received between the federated engine and SPARQL End-
points measured in bytes size during query execution. The
run time is started when the federated engine receives a
query from the client and ended when it dispatches the query
results to the client. The data transmission is highly related
to our goal to investigate the impact of big literal object
values, the distributions of the predicates, and OPTIONAL
and FILTER keywords on the performance of a federated
engine.

4.1.4 Query set

In total, we produced 5088 queries in 32 categories. The
detail of our queries generation results can be found at our

7
http://wifo5-03.informatik.uni-mannheim.de/dailymed/

8
http://wifo5-03.informatik.uni-mannheim.de/drugbank/

9
http://wifo5-03.informatik.uni-mannheim.de/diseasesome/

10
http://wifo5-03.informatik.uni-mannheim.de/sider/

11
http://jena.apache.org/documentation/serving_data/

Github Wiki page (https://github.com/nurainir/QFed/
wiki). We distinguished the categories based on the query
threshold, the existence of big literal objects value, OP-
TIONAL and SERVICE keywords. For simplicity, the thresh-
old value of class and properties is two. Therefore, we pro-
duces 159 queries for each category. Although we insert
SERVICE and OPTIONAL, the average of predicate occur-
rence and number of queries stay the same. Due to the limi-
tation of Fuseki for running a query, we also append LIMIT
keywords for the queries that run on Fuseki. Each query is
executed three times and limited to 10 minutes of execution.

4.2 Results and Discussion
The main goal of including the SERVICE keyword in

a query is to ensure that the query cover more than one
dataset. If Fuseki returns an empty result for a query with
SERVICE keyword, it means that the query does not involve
more than one dataset. The results of SERVICE query ex-
ecution shows that only 0.07% out of the queries generated
failed to return answers.

In order to distinguish each query set category, we name
query sets as follows: Label C following the number repre-
sents the constraint of number entities for each class. By
adding label P and following with the number, we limit the
number of properties based on their frequencies. B, the last
label, denotes that query set contains big literal object value.
The value of C and P are two. In our evaluation, we add la-
bel O, F and B to denote query with OPTIONAL, FILTER
keywords and big literal object value respectively.

As depicted in Figure 3, the replacement of the literal
object value with the big literal object value lead to an in-
creased volume data transmission between the Fuseki and
SPARQL endpoints. The OPTIONAL and FILTER key-
words does not contribute to increasing of the communica-
tion cost since we add LIMIT keyword for the query with
SERVICE keyword. LIMIT keyword aligns the selectivity
values of queries with the same ID among categories. There
is not much difference between query concerning properties
distribution(D) and the query that does not take account
properties distribution(ND). The reason is that Fuseki does
not have a source selection mechanism because the user has
to define the source of each sub query beforehand. As such,
the distribution of properties does not influence the commu-
nication cost.

Due to the time out issue and Java memory heap space
problem, FedX failed to execute 5.68% of the queries. We
eliminated all the failed query result along with all the queries
that have same IDs to the failed ones. Query selectivity
value gets low when OPTIONAL keyword is added to the



0 150000 300000 450000

Average Volume of Data Transmission(Bytes)

C2P2BOF

C2P2BO

C2P2BF

C2P2B

C2P2OF

C2P2O

C2P2F

C2P2

ND

D

Figure 3: Data Transmision on Fuseki Execution
(in bytes). D=Properties Distribution Considered,
ND=Properties Distribution Not Considered

query. As a result, the response time and the volume of data
transmission increase as shown in Figure 4(a) and 4(b). The
using big literal object also causes an increased in volume
of data transmission (Figure 4(b)), but if a query with the
small literal object has a smaller selectivity value than a
query with the big literal value, then in some cases, they re-
quire almost the same bandwidth consumption. If the prop-
erties distribution is considered, the FedX performance gets
worse as FedX has to interrogate more SPARQL endpoints
to execute a single query. The addition of FILTER keyword
can cut the number of intermediate results and eventually re-
duces the communication cost between FedX and SPARQL
endpoints.

5. CONCLUSION
We have presented QFed, a tool for generating the queries

to asses the performance of the federated engine. The gen-
eration of the queries considers the distribution of the pred-
icates as the characteristic of the dataset. With respect to
the cost of data communication, we add the big literal ob-
ject, FILTER and OPTIONAL keyword in the query. In
order to integrate data from different sources, we identify
subject-object, subject-subject and object-object join pat-
terns. The experimental result showed that big literal ob-
ject has a significantly impact on Fuseki performance since
Fuseki executes the query that declares SPARQL endpoints
before execution. Using predicates that are distributed over
the dataset, the big literal object, FILTER keyword and OP-
TIONAL keyword in the query influence the volume of data
transmission between the FedX and the SPARQL endpoints
and the FedX response time. The addition of OPTIONAL
keyword contributes to the performance of FedX more sig-
nificantly than the addition of a big literal value since it can
reduce the selectivity value of a query.
Since the SPARQL 1.1 has supported update operation

such as INSERT and DELETE, we plan to evaluate the up-
date operation query. Furthermore, we will include more
SPARQL keywords and operator. In terms of the metrics,
we will take into account other metrics such as the federated
engine runtime which is normally used as the performance
indicator.

0 10000 20000 30000

Average Response Time(seconds)

C2P2

C2P2B

C2P2BF

C2P2BO

C2P2BOF

C2P2F

C2P2O

C2P2OF

ND

D

(a) Response Time

0 8000000 16000000 24000000

Average Volume of Data Transmission(Bytes)

C2P2

C2P2B

C2P2BF

C2P2BO

C2P2BOF

C2P2F

C2P2O

C2P2OF

ND

D

(b) Data Transmission

Figure 4: FedX Execution Results. D=Properties
Distribution Considered, ND=Properties Distribu-
tion Not Considered



6. ACKNOWLEDGEMENT
This publication has emanated from research conducted

with the financial support of Science Foundation Ireland
(SFI) under Grant Number SFI/12/RC/2289.

7. REFERENCES

[1] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and
E. Ruckhaus. ANAPSID: an adaptive query processing
engine for SPARQL endpoints. In ISWC, 2011.

[2] N. Aini Rakhmawati, J. Umbrich, M. Karnstedt,
A. Hasnain, and M. Hausenblas. Querying over
Federated SPARQL Endpoints —A State of the Art
Survey. ArXiv e-prints, June 2013.

[3] M. Arias, J. D. Fernández, M. A. Mart́ınez-Prieto, and
P. de la Fuente. An empirical study of real-world
sparql queries. CoRR, abs/1103.5043, 2011.

[4] C. Bizer and A. Schultz. The berlin sparql benchmark.
IJSWIS, 5(2):1–24, 2009.

[5] O. Görlitz and S. Staab. Splendid: Sparql endpoint
federation exploiting void descriptions. In COLD at
ISWC, 2011.

[6] O. Görlitz, M. Thimm, and S. Staab. Splodge:
Systematic generation of sparql benchmark queries for
linked open data. In ISWC, pages 116–132, 2012.

[7] G. Montoya, M.-E. Vidal, Ó. Corcho, E. Ruckhaus,
and C. B. Aranda. Benchmarking federated sparql
query engines: Are existing testbeds enough? In
ISWC, pages 313–324, 2012.

[8] M. H. Nur Aini Rakhmawati, Marcel Karnstedt and
S. Decker. On metrics for measuring fragmentation of
federation over sparql endpoints. In WEBIST.
SciTePress, 2014.

[9] M. Saleem, M. Kamdar, A. Iqbal, S. Sampath,
H. Deus, and A.-C. Ngonga Ngomo. Big linked cancer
data: Integrating linked tcga and pubmed. Web
semantics: Science, Services and Agents on the World
Wide Web, 2014.

[10] M. Saleem, M. R. Kamdar, A. Iqbal, S. Sampath,
H. F. Deus, and A.-C. Ngonga. Fostering serendipity
through big linked data. In Semantic Web Challenge
at ISWC2013, 2013.

[11] M. Saleem and A.-C. N. Ngomo. Hibiscus:
Hypergraph-based source selection for sparql endpoint
federation. In The Semantic Web: Trends and
Challenges, pages 176–191. Springer, 2014.

[12] M. Saleem, A.-C. N. Ngomo, J. X. Parreira, H. F.
Deus, and M. Hauswirth. Daw: Duplicate-aware
federated query processing over the web of data. In
The Semantic Web–ISWC 2013, pages 574–590.
Springer, 2013.

[13] M. Schmidt, O. GÃűrlitz, P. Haase, G. Ladwig,
A. Schwarte, and T. Tran. Fedbench: A benchmark
suite for federated semantic data query processing. In
ISWC, volume 7031, pages 585–600. Springer, 2011.

[14] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel.
Spˆ 2bench: a sparql performance benchmark. In
ICDE, pages 222–233, 2009.

[15] A. Schwarte, P. Haase, K. Hoose, R. Schenkel, and
M. Schmidt. Fedx: A federation layer for distributed
query processing on linked open data. In ESWC, 2011.

[16] J. Umbrich, A. Hogan, A. Polleres, and S. Decker.

Improving the recall of live linked data querying
through reasoning. In RR, pages 188–204, 2012.

[17] X. Wang, T. Tiropanis, and H. C. Davis. Lhd:
Optimising linked data query processing using
parallelisation. In LDOW at WWW, 2013.


