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Abstract. Only a small fraction of the information on the Web is represented as
Linked Data. This lack of coverage is partly due to the paradigms followed so far
to extract Linked Data. While converting structured data to RDF is well supported
by tools, most approaches to extract RDF from semi-structured data rely on ex-
traction methods based on ad-hoc solutions. In this paper, we present a holistic
and open-source framework for the extraction of RDF from templated websites.
We discuss the architecture of the framework and the initial implementation of
each of its components. In particular, we present a novel wrapper induction tech-
nique that does not require any human supervision to detect wrappers for web
sites. Our framework also includes a consistency layer with which the data ex-
tracted by the wrappers can be checked for logical consistency. We evaluate the
initial version of REX on three different datasets. Our results clearly show the
potential of using templated Web pages to extend the Linked Data Cloud. More-
over, our results indicate the weaknesses of our current implementations and how
they can be extended.

1 Introduction

The Linked Open Data (LOD) Cloud has grown from 12 datasets (also called knowl-
edge bases) to over 2000 knowledge bases in less than 10 years.4 This steady growth of
the LOD Cloud promises to continue as very large datasets such as Linked TCGA [20]
with 20.4 billion triples are added to it. However, the LOD Cloud still contains only a
fraction of the knowledge available on the Web [13]. This lack of coverage is mainly
due to the way the data available on the LOD Cloud is extracted. Most commonly, the
data in the LOD Cloud originates from one of two types of sources: structured data
(especially databases such as Drugbank,5 Diseasome,6 etc.) and semi-structured data
sources (for example data extracted from the Wikipedia7 infoboxes). While generating
RDF triples from structured data (especially databases) is well supported by tools such
as Triplify [3], D2R [4] and SPARQLMap [21] , devising automatic means to generate
? Both authors contributed equally to this work.
4 http://stats.lod2.eu/
5 http://www.drugbank.ca
6 http://diseasome.eu
7 http://wikipedia.org



RDF from semi-structured data is a more challenging problem. Currently, this challenge
is addressed by ad-hoc or manual (e.g., community-driven) solutions. For example, the
well-known DBpedia [2] provides a mapping Wiki8 where users can explicate how
the content of infoboxes is to be transformed into RDF. On the one hand, manual ap-
proaches offer the advantage of leading to high-precision data; on the other hand, they
suffer of a limited recall because of the small number of web sources from which the
data is extracted. For example, DBpedia only contains a fraction of the movies that
were published over the last years because it was extracted exclusively from Wikipedia.
Moreover, the same knowledge base only contains a fraction of the cast of some of the
movies it describes.

The main aim of this paper is to address the challenge of extracting RDF from
semi-structured data. We introduce REX, an open-source framework for the extraction
of RDF from templated websites (e.g., Wikipedia, IMDB, ESPN, etc.). REX addresses
the extraction of RDF from templated websites by providing a modular and extensi-
ble architecture for learning XPath wrappers and extracting consistent RDF data from
these web pages. Our framework is thus complementary to RDF extraction frameworks
for structured and unstructured data. While REX targets the extraction of RDF from
templated websites in its current version, the architecture of the framework is generic
and allows for creating versions of the tool that can extract RDF from other sources on
websites, for example from unstructured data or from the billions of tables available on
the Web. Our framework has the following features:

1. Extensibility, i.e., our framework is open-source, available under the MIT license
and can thus be extended and used by any third party;

2. Use of standards, i.e., REX relies internally on widely used libraries and on W3C
Standards such as RDF, SPARQL and OWL;

3. Modularity, i.e., each of the modules can be replaced by another implementation;
4. Scalability, i.e., the current algorithms can be used on large amounts of data;
5. Low costs, i.e., REX requires no human supervision;
6. Accuracy, i.e., the current implementation achieves satisfactory F-measures and
7. Consistency, i.e., REX implements means to generate triples which abide by the

ontology of the source knowledge base providing the training data.

In addition to being novel in itself, REX introduces a novel wrapper induction tech-
nique for extracting structured data from templated Web sites. This induction approach
makes use of the large amount of data available in the LOD Cloud as training data. By
these means, REX circumvents the problem of high annotation costs faced by several
of the previous wrapper induction approaches [16, 11] while keeping the high accuracy
of supervised wrapper induction methods. By post-processing the output of website
wrappers, our system can generate novel triples. To ensure that these novel triples are
consistent, REX provides a consistency check module which computes and uses the
axioms which underlie the input knowledge base K. Only those triples which do not
break the consistency rules are returned by REX. The contributions of this paper are
consequently as follows:

8 http://mappings.dbpedia.org



1. We introduce a novel framework for the extraction of RDF from templated web-
sites.

2. We present a novel wrapper induction approach for the extraction of subject-object
pairs from the Web.

3. We integrate state-of-the-art disambiguation and schema induction techniques to
retrieve high-quality RDF.

4. We evaluate the first version of REX on three datasets and present both the strengths
and weaknesses of our approach.

5. Overall, we present the (to the best of our knowledge) first web-scale, low-cost, ac-
curate and consistent framework that allows extracting RDF from structured web-
sites.

The rest of this paper is organized as follows. In Section 2, we introduce the nota-
tion that underlies this paper and the problems that we tackle. Section 3 presents the
architecture of REX in more detail as well as the current implementation of each of
its components. In particular, we illustrate our approach to generate examples from a
knowledge base K and we show our algorithm to learn web wrappers from such exam-
ples. Subsequently, we give an overview of AGDISTIS [22] which we use to address
the problem of URI disambiguation. Finally, we describe our current solution to en-
suring the validity of the data generated by REX. In Section 4 we present the results
of REX on 3 datasets, each containing at least 10,000 pages. We discuss related work
in Section 5, and we conclude the paper in Section 6. More information on REX can
be found at http://aksw.org/Projects/REX including inks to the source code
repository (incl. examples), to the documentation and to a tutorial of the framework.

2 Notation and Problem Statement

In this section, we present the concepts and notation to understand the concept behind
REX. We denote RDF triples as < s, p, o > where (s, p, o) ∈ R × P × (R ∪ L). We
call R the set of resources, P the set of properties and L the set of literals. We call
A = R ∪ P ∪ L the set of all atoms. We regard knowledge bases K as sets of triples.
We denote the set of all pairs (s, o) such that < s, p, o >∈ K with pairs(p,K). We
define the in-degree in(a) of an atom a in K as the number of distinct x such that
there is a predicate q with < x, q, a >∈ K. Conversely, the out-degree out(a) of a is
defined as the number of distinct atoms y that are such that there exists a predicate q′

with < a, q′, y >∈ K. We assume the existence of a labeling function label, which
maps each element of A to a sequence of words from a dictionary D. Formally, label :
A → 2D. For example, the value of label(r) can be defined as the set of x with <r,
rdfs:label, x>∈ K if r is a resource and as the lexical form of r if r is a literal.

Based on this formalisation, we can define the problem that REX addresses as fol-
lows: Given (1) a predicate p that is contained in a knowledge base K and (2) a set of
unlabeled web pages W = {w1, w2, . . . , w|W |}, extract a set of triples < si, p, oi >
from the websites of W . Several tasks have to be addressed and solved to achieve this
goal within the paradigm that we adopt:



Problem 1: We first require an approach for extracting pairs of resource labels out of
unlabelled pages wi. We tackle this problem by means of a wrapper induction algorithm
(see Section 3.4). We assume that we are given (1) a set E ⊆ {(s, o) : < s, p, o >∈ K}
of positive examples for a predicate p from the Linked Data Web and (2) a set of web
pages W without any labeling. Our aim is to generate high-quality wrappers, expressed
as pairs of XPath expressions over these unlabeled web pages W , that extract a pair of
values from each page.

Problem 2: Once the pairs of values have been extracted from web pages, we need to
ground them in the knowledge base K. In this context, grounding means that for each
value extracted by our solution to Problem 1 we have to either (1) find a matching re-
source or (2) generate a novel resource or literal for this particular value. We address this
challenge by using a URI disambiguation approach that combines breadth-first search
and graph algorithms to determine a resource that matches a given string. If no URI is
found, our approach generates a new resource URI (see Section 3.5).

Problem 3: Once new knowledge has been generated, it is central to ensure that the
knowledge base K to which it is added remains consistent. To this end, we need to
ensure that we do not add any statements to K that go against its underlying axioms.
The problem here is that these axioms are not always explicated in knowledge bases
in the LOD Cloud. We thus devise an approach to generate such axioms from instance
data (see Section 3.5). To achieve this goal, we use a statistical analysis of the use of
predicates across the knowledge base K. Moreover, we provide means to use RDFS
inference to generate new knowledge from new resources generated by our solution to
Problem 2.

3 The REX Framework

In the following, we present REX, an integrated solution to the three problems presented
above. We begin by giving an overview of its architecture. Then, we present each of its
components. As running example, we use the extraction of movie directors from web
pages.

3.1 Overview

Figure 1 gives an overview of REX. All modules are interfaces, for which we provide
at least one implementation. Hence, REX can be ran out of the box. Given a predicate p
and a knowledge base K, REX provides a domain identification interface, which allows
for detecting Web domains which pertain to this predicate. For example, the predicate
dbo:actor leads to the domain http://imdb.com being retrieved. From this do-
main, a set W of web pages can be retrieved by using a crawler. The results of the
crawling are stored in a solution for unstructured data, for example an index. REX then
generates a set of examples using an instantiation of the example generator interface.
The goal here is to generate a sample E of all elements of pairs(p,K) that allows
learning high-quality pairs of XPath expressions. The examples are given to a wrapper



inducer, which learns pairs of XPath expressions for extracting the pairs of values in E
from the elements of W . These pairs are then applied to all pages of W . The extrac-
tion results, i.e., pairs of strings, are passed on to a URI generator, which implements
a graph-based disambiguation approach for finding or generating URIs for the strings
contained in the extraction results. The resulting set C of candidate triples are finally
forwarded to an validation engine, which learns axioms from K and applies these to
C to derive a set of triples that are consistent with K. In the following, we detail our
current implementation of each of these components.

Fig. 1: Architecture of REX.

3.2 Extraction Layer

REX’s data extraction layer consists of two main components: The domain identifica-
tion module is the first component of the layer and takes a set of triples (s, p, o) as
examples and returns a ranked list of Web domains. Our current implementation sim-
ply uses the Google interface to search for websites that contain the label of all s,
p and o. The top-10 domains for each triple are selected and their rank is averaged
over all triples. The resulting ranking is returned. For our example dbo:actor, we
get http://imdb.com as top-ranked domain. The second component consists of a
crawler interface which allows to gather the web pages that are part of the detected
domain and collect them in a storage solution for unstructured data. Currently, we rely
on crawler4j9 for crawling and Apache Lucene10 for storing the results of the crawling.

3.3 Storage Layer

The storage layer encapsulates the storage solutions for structured data (i.e., the knowl-
edge base K) and the unstructured data (i.e., the output of the extraction layer). We

9 https://code.google.com/p/crawler4j/
10 http://lucene.apache.org/



assume that the structured data can be access via SPARQL. The unstructured data stor-
age is expected to return data when presented with a pair (s, o) of resources, which is
commonly a positive or negative example for the pairs that abide by p. As stated above,
we rely on a Lucene index that can access the labels of resources and simply search
through its index for pages that contain both a label for s and a label for o.

3.4 Induction Layer

The induction layer uses the data in the storage layer to compute wrappers for the web-
site crawled in the first step. To this end, it contains two types of modules: The example
generation module implements sampling algorithms that are used to retrieve examples
of relevant pairs (s, o) such that (s, p, o) ∈ K. These examples are used to feed the
wrapper induction module, which learns the wrappers that are finally used to extract
data from web pages. Hereafter, we present the implementations of these modules.

Generation of Examples Given a knowledge base K, the generation of all examples
E for a predicate p can be retrieved by computing all triples < s, p, o > from K. How-
ever, using all triples might lead to poor scalability, especially if K is very large. To
ensure the scalability of our approach, we thus aimed to ensure that we can provide
REX with only a sample of E and thus reduce its learning runtime without diminishing
its accuracy. Our first intuition was that it is more likely to find resources that stand for
well-known real-world entities on the Web. Thus, by selecting the most prominent ex-
amples from the knowledge K, we should be able to improve the probability of finding
web pages that contain both the subject and the object of our examples. This intuition
can be regarded as prominence-driven, as it tries to maximize the number of annotated
pages used for learning. We implemented this intuition to generating a sample of E by
implementing a first version of the example generator that ranks the examples (s, o) in
E in descending order by how prominent they are in the knowledge base. The score
scr for ranking the examples was computed by summing up the in- and out-degree of
s and o: scr(s, o) = in(s) + in(o) + out(s) + out(o). We call this example selection
prominence-based.

The main drawback of this first intuition is that it introduces a skew in the sam-
pling as we only consider a subset of entities with a particular distribution across the
pages in W . For example, actors in IMDB have different templates depending on how
popular they are. Learning only from popular actors would then lead to learning how
to extract values only from web pages obeying to particular type of HTML template.
While this problem can be by choosing a large number of examples, we revised our
sampling approach to still use the ranking but to sample evenly across the whole list
of ranked resources. To this end, given a number n of required pairs, we return the
first n pairs (s, o) from the ranked list computed above whose index idx abides by

idx(s, o) ≡ 0
(
mod

⌊
|E|
n

⌋)
. We call this second implementation of the example gen-

erator interface the uniform approach .



Wrapper Generation Detecting rules to extract the subject-object pairs related to a
property p is the most difficult step when aiming to extract RDF from templated web-
site. Here, we present our current implementation of the wrapper induction module
interface of REX, which aims to extract subject-object pairs for p from a set of pages
W that belong to the same website and share a common template. We assume that an
example generator provides the input set E containing a subset of the pairs that can
be extracted from the pages in W . Formally, let Q denote the set of pages that con-
tain a pair in E: Q = {w : w ∈ W, (s, o) ∈ E ∧ (label(s), label(o)) ∈ w}, where
(label(s), label(o)) ∈ w denotes that at least one of the labels of s and at least one of
the labels of o occur in the page w. We use the pairs in E to gain the positive annota-
tions for the pages in Q. These annotations are needed to automatically infer a set of
wrappers, i.e., a set of extraction rule pairs that extract the target subject-object pairs.

To avoid the extraction of incorrect values, our approach includes a technique to
evaluate the output wrapper coverage, i.e., the number of pages in W for which the
wrappers inferred from Q correctly extract the target subject-object pairs.

Listing 1 reports the pseudo-code of our algorithm to generate the wrappers that
extract subject-object pairs related to a property p from a set of pages: it takes as input
the set of pages W and the set of examples E. To abstract the extraction rules genera-
tive process in our implementation, we assume that there exists, as a parameter of the
algorithm, a class of all the creatable extraction rules R. It corresponds to the set of
XPath expressions that we can generate over the pages in W .

As a first step (line 2), the algorithm computes the set of pages Q (we assume
Q 6= ∅). Then, it picks up a small set of sample pages I from Q.11 From the pages in
I two initial sets of extraction rules, Rs and Ro, are generated (lines 4-5), as follows.
First, we analyze the DOM tree of the pages to locate nodes that are part of the template.
We use these nodes as roots of XPath expressions that match with the input pair. To
discover the template nodes, we compute the occurrences of the textual leaf nodes in
the pages. Following the intuition developed in [1], we consider template nodes the
document root, the nodes with an id attribute, and the text leaves that occur exactly
once with same value and same root-to-leaf sequence of tags in a significant percentage
(80%) of pages. The rationale is that it is very unlikely that a node occurs exactly once
in several pages with the same root-to-leaf path by chance; rather, it is likely repeated
in every page since it comes from a piece of the underlying HTML template.

Template nodes are then used as pivot nodes to generate XPath expressions that
match with nodes containing a textual leaf that equals the subject (object) of the input
pair. Given a pivot node l, an XPath expression for the textual node t is computed
by appending three expressions: (i) an expression that matches with the pivot node t,
(ii) the path from t to the first ancestor node, nlt, shared by t and l, (iii) the path from
nlt to l (which descends from the shared ancestor node to the target textual node). To
avoid an excessive proliferation of rules, we bound the length of the XPath expressions,
i.e., the number of XPath steps.12

The above step produces several extraction rules that correctly work on the pages in
I . However some of these rules could not work on a larger set of pages. For example,

11 In our implementation k = |I| = 10.
12 We observed that producing rules longer than 8 steps do not produce any benefit.



(a)

Extraction rules
r1: //*[contains(.,”Ratings:”)]/../p-s::tr[2]/td/text()

r2: //*[contains(.,”Director:”)]/../p-s::tr[1]/td/text()

r3: /html/table/tr[1]/td/text()

ps = preceding-siblings

(b) (c) (d)

Fig. 2: (a) DOM trees of three pages (in a fictional set I), (b) a page in Q (with a
template that differs from those of the pages in I), (c) some rules to extract the movie
title, and (d) a page in W (with a template that differs from those of the pages in Q).

consider a set of pages such as those shown in Figure 2(a). Assuming that the leaf
nodes ‘Director:’ and ‘Ratings:’ appear once with the same root-to-leaf path in most
of the pages in I , they would be considered as template nodes. Figure 2(c) reports an
example of the XPath expressions pivoted in these nodes, and generated to extract the
movie title. Notice, however, that rule r1 does not extract the movie title on pages like
that depicted in Figure 2(b), i.e., pages without user ratings. To improve the accuracy
of the rules generated from pages in I , we evaluate the generated rules over Q, and
select those that extract the largest number of annotations (line 6). In our example, the
extraction rules r2 and r3 would be selected, while r1 would be discarded, as the former
rules work also on the page of Figure 2(b), while the latter does not.

The selected rules are those better working for the pages in Q, that are the pages
containing pairs of K. Although it is likely that these rules also work for the whole
collection of input pages, it might also be the case that W contains pages obeying to
a slightly different template not observed within Q. For example, consider the page in
Figure 2(d): since the movie has been awarded 3 Oscars, the corresponding page has
small structural differences, and neither r1 nor r3 correctly extract the title.

To overcome this issue, we leverage the redundancy of equivalent rules generated
in the above steps. Targeting only resources from pages for which the extraction is
likely to work correctly, we return the pairs (lines 7-8) on which all the distinct yet
equivalent rules return the same value. Again from our example, observe that rules r2

and r3 extract different values from the page in Figure 2(d) (Argo and Oscar 2013,
respectively), therefore, none of the values extracted from that page would be added in
the final output. All these rules are used later (lines 9-13) to check that they extract the
same value (line 10) from a web page.



Listing 1 ALFREX: Extract Subject-Object Pairs from a Website

Input: knowledge base K, a predicate p, a set of examples E = {(s, o)|(s, p, o) ∈ K}
Input: a set of pages W = {w1, . . . , w|W |} containing data related to the predicate p

Parameter: a class of extraction rulesR over W
Parameter: k, the number of sample pages for generating the rules

Output: set T of pairs of strings extracted from pages W

1: T := ∅; // output pairs of strings
2: Q := {w ∈W : (label(s), label(o)) ∈ w, (s, o) ∈ E};
3: I := a set of k random pages from Q;
4: Rs := {r, r ∈ R,w ∈ I, (label(s), label(o)) ∈ w, r(w) = label(s)};
5: Ro := {r, r ∈ R,w ∈ I, (label(s), label(o)) ∈ w, r(w) = label(o)};
6: (rs, ro) := argmaxrs∈Rs,ro∈Ro

|{w,w ∈ Q, (label(s), label(o)) ∈ w, rs(q) =
label(s) and ro(q) = label(o)}|;

7: {r1s , r2s , . . . , rns } ← {r, r ∈ Rs, r(Q) = rs(Q)};
8: {r1o, r2o, . . . , rmo } ← {r, r ∈ Ro, r(Q) = ro(Q)};
9: for q ∈W do

10: if (r1s(q) = . . . = rns (q) and r1o(q) = . . . = rmo (q)) then
11: T ← T ∪ {(r1s(q), r1o(q))};
12: end if
13: end for
14: return T ;

3.5 Generation Layer

Now that data has been extracted from the websites, REX is ready to generate RDF
out of them. To achieve this goal, two steps needs to be carried out. First, the strings
retrieved have to be mapped to RDF resources or literals. This is carried out by the
URI disambiguation modules. The resulting triples then need to be checked for whether
they go against the ontology of the knowledge base or other consistency rules. This
functionality is implemented in the data validation modules.

URI Disambiguation URI disambiguation is not a trivial task, as several resources can
share the same label in a knowledge base. For example, “Brad Pitt” can be mapped to
the resource :Brad Pitt (the movie star) or :Brad Pitt (boxer), an Australian
boxer. We address this problem by using AGDISTIS, a framework for URI disambigua-
tion [22]. In our current implementation, we chose to simply integrate the AGDISTIS
framework using DBpedia 3.8. We chose this framework because it outperforms the
state-of-the-art frameworks AIDA [15] and DBpedia Spotlight [18] by 20% w.r.t. its
accuracy. Especially on short RSS feeds containing only two resource labels, the ap-
proach achieves 3% to 11% higher accuracy. More details on AGDISTIS as well as a
thorough evaluation against popular frameworks such as DBpedia Spotlight and AIDA
can be found in [22]. Note that if no resources in K has a URI which matches s or o,
we generate a new cool URI13 for this string.
13 http://www.w3.org/TR/cooluris



Data Validation Sequentially applying the steps before results in a set of triples <
s, p, o > that might not be contained in K. As we assume that we start from a consis-
tent knowledge base K and the whole triple generation process until here is carried out
automatically, we need to ensure that K remains consistent after adding < s, p, o >
to K. To this end, REX provides a data validation interface whose first implementa-
tion was based on the DL-Learner.14 Depending on the size of K, using a standard
OWL reasoner for consistency checks can be intractable. Thus, our current implemen-
tation applies the following set of rules based on the schema of K and add a triple
< s1, p, o1 > only if it holds that:

1. If a class C is the domain of p, there exists no type D of s1 such that C and D are
disjoint.

2. If a class C is the range of p, there exists no type D of o1 such that C and D are
disjoint.

3. If p is declared to be functional, there exists no triple < s1, p, o2 > in K such that
o1 6= o2.

4. If p is declared to be inverse functional, there exists no triple < s2, p, o1 > in K
such that s1 6= s2.

5. If p is declared to be asymmetric, there exists no triple < o1, p, s1 > in K.
6. If p is declared to be irreflexive, it holds that s1 6= o1.

Note that this approach is sound but of course incomplete. Although an increasing num-
ber of RDF knowledge bases are published, many of those consist primarily of instance
data and lack sophisticated schemata. To support the application of the above defined
rules, we follow the work in [6, 7], which provides a lightweight and efficient schema
creation approach that scales to large knowledge bases.

4 Evaluation

The goal of the evaluation was to provide a detailed study of the behavior of the current
REX modules with the aim of (1) ensuring that our framework can be used even in its
current version and (2) detecting current weaknesses of our framework to trigger future
developments. In the following, we begin by presenting the data and hardware we used
for our experiments. Thereafter, we present and discuss the results of our experiments.
Detailed results can be found at the project website.

4.1 Experimental Setup

We generated our experimental data by crawling three websites, i.e.,

1. imdb.comwhere we extracted dbo:starring, dbo:starring−1 and dbo:
director;

2. goodreads.com, from which we extracted dbo:author and dbo:author−1;
3. espnfc.com with the target relations dbo:team and dbo:team−1.

14 http://dl-learner.org



We chose these websites because they represent three different categories of templated
websites. imdb.com widely follows a uniform template for all pages in the same sub-
domain. Thus, we expected the wrapper learning to work well here. goodreads.com
represents an average case of templated websites. While template are most widely used
and followed, missing values and misused fields are more common here than in our
first dataset. The third dataset, espnfc.com, was chosen as worst-case scenario. The
dataset contains several blank pages, a large variety of templates used in manifold dif-
ferent fashions. Consequently, defining a set of golden XPaths is a tedious task, even
for trained experts. Thus, we expected the results on this dataset to be typical for the
worst-case behavior of our approach. We randomly sampled 10,000 HTML pages per
subdomain for our experiments and manually built reference XPath expressions to eval-
uate the precision and recall of the generated extraction rules. The precision, recall and
F-measure reported below were computed by comparing the output of REX with the
output of the reference XPath expressions. All extraction runtime experiments were
carried out on single nodes of an Amazon EC2.small instance.

4.2 Results

Effect of Number of Examples and Sampling Strategy on F-measure The results
of our experiments on altering the number of examples used for learning are shown
in Figures 3a-3h. Due to space limitations, we show the average results over all the
pairs extraction by our wrapper induction approach for each of the domains. The results
achieved using the prominence-based sampling show the expected trend: on pages that
use a consistent template (such as the director pages in imdb.com), our approach re-
quires as few as around 70 pages for |Q|. Once this value is reached, REX can compute
high-quality extraction rules and achieves an F-measure of 0.97 (see Figures 3a). For
pages that change template based on the prominence of the entities they describe (like
the actors’ pages, see Figure 3b), our approach requires more training data to achieve
a high F-measure. The increase of F-measure is clearly due to an increase in precision,
pointing to REX being able to better choose across different alternative XPaths when
provided with more information. The results of goodreads.com support our conjec-
ture. With more training data, we get an increase in precision to up to 1 while the recall
drops, leading to an overall F-measure of 0.89 for 40k examples. In our worst-case sce-
nario, we achieve an overall F-measure close to 0.6. The lower value is clearly due to
the inconsistent use of templates across the different pages in the subdomains.

Table 1: Average evaluation results using all available pairs as training data.
P R F-measure # pages

dbo:director 0.82 1.00 0.89 216
dbo:starring 0.86 1.00 0.90 316
dbo:author 0.94 0.85 0.86 217
dbo:team 0.32 0.43 0.35 656
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Fig. 3: Overall evaluation results of the extraction of pairs. Figures (a)-(h) show the aver-
age precision, recall and F-measure achieved the generated XPaths for the prominence-
based and uniform sampling. The x-axis shows the number of examples and the number
of sample pages retrieved in the format |E|/|Q|. Figure (i) shows the average computa-
tional time and the corresponding F-measures for different sizes of |I|.

The results based on the uniform sampling strategy reveal another trait of REX. As
expected, the coverage achieved using uniform sampling is clearly smaller in all cases.
The results achieved with all the training data available clearly show the importance of
sampling (see Table 1). While one could conjecture that using all data for training would
be beneficial for our approach, the F-measures achieved by using all the data suggest
that sampling can be beneficial for the extraction, especially when the web pages do not
follow a rigid template (e.g., in esnpfc.com) or when the data in the knowledge base
is noisy. Overall, our results suggest that our approach is accurate, also for pages where



Property #Possible #Triples generated #Consistent #Correct #New
triples by AlfREX triples triples triples

dbo:author−1 54 32 32 22 22
dbo:author 83 83 69 54 54

dbo:team−1 2 1 1 0 0
dbo:team 30 55 42 19 13

dbo:starring−1 40 99 83 35 34
dbo:starring 70 70 44 33 32

dbo:director 61 56 52 41 41

Table 2: Triples generated by 100 randomly sampled pages, number of possible triples
generated by using gold standard rules

entities with different prominence are assigned variable templates as in imdb.com
actors. If multiple occurrences of the same value are present in the same page (as in the
case of books, actors and directors), our algorithm is able to detect the most stable one.
Moreover, our approach seems robust against noisy labels, even when there are many
false positive in the page (e.g., book author pages that include many links to different
books by the same author). An important feature of our approach is that it can obtain
accurate XPaths even by learning from a very small fraction of pages. For example,
in our experiments on up to 40k pages, our approach learned XPath expressions from
only 0.5% to 1.16% of |W |. Still, for very noisy domains with an inconsistent use of
templates, our approach can lead to less accurate extraction rules.

Runtime Performance We evaluated the runtime performance of our approach by
using 40k examples and the prominence-based distribution while altering the size of I .
As expected, setting |I| to a low value (e.g., 1) leads to less rules being generated and
thus to an overall better runtime performance (see Figure 3i). By setting I to a low value,
REX can be used to get a quick overview of possible extraction results, a characteristic
of our system that could result beneficial for end users. Yet, it also leads to worse overall
F-measures. Setting I to a higher value (e.g., 15) leads to a more thorough (i.e., more
time-demanding) analysis of the websites and thus to better results. Still overall, our
approach scales quasi linearly and requires on average less than thirty seconds to learn
wrappers out of existing data even for |I| = 20.

Quality of RDF Output To check the quality of the RDF we generated, we manually
checked the triples extracted from each property of our three domains. Each triple was
checked by at least two annotators, which reached a significant Kohen’s kappa score
of 0.88 overall. On goodreads.com we achieved a precision of 75.24%. While we
achieve a precision of 78.85% when extraction directors from imdb.com and of 75% on
starring, the extraction of starring−1 proves more tedious (precision = 42.17%).
As expected, the data extracted from espnfc.com has a low precision of 44.19%. The
results on starring−1 are due to the fact that several actors can star in a movie while



assuming other roles. Thus, our extraction framework often overgenerates triples and
produces false positives (e.g., directors are often included). The results on espnfc.com
are clearly due to the templates not being used correctly. Still, our results clearly show
the potential of our approach, as 60.68% of the triples we extracted are both correct and
novel.

5 Related Work

To the best of our knowledge, no open-source framework covers the complete func-
tionality of the REX framework. REX relies internally on URI disambiguation and
data validation based on automatically extracted axioms [6]. These are both areas of
research with a wide of body of publications. Especially, several approaches to URI
disambiguation based on graphs [15, 22] and statistical information from text [18] have
been developed recently. The extraction of axioms from knowledge based using statis-
tical information [6, 7] as also flourished over the last years. The main idea underlying
these approaches is to use instance knowledge from knowledge bases without expres-
sive schemas to compute the axioms which underlie the said knowledge bases. We refer
the reader to the publications above for an overview of these two research areas.

REX is mainly related to wrapper induction. Early approaches to learning web
wrappers were mostly supervised (see, e.g., [16, 11]). These systems were provided
with annotated pages out of which they infer extraction rules that allow extracting data
from other unlabeled pages with the same structure as the annotated pages). For exam-
ple [16] presents Tresher, a system that allows non-technical end-users to teach their
browser how to extract data from the Web. Supervised approaches were yet deemed
costly due to the human labor necessary to annotate the input web pages. Unsuper-
vised wrapper induction methods have thus been explored [8, 1] to reduce the annota-
tion costs. However, the absence of a supervision often lead these systems to produce
wrappers of accuracy not suitable for production level usage. Novel approaches thus
aim to minimize the annotation costs while keeping a high precision. For example, the
approach presented in [10] relies on the availability of a knowledge base in the form
of dictionaries and regular expressions to automatically obtain training data. Recently,
[9] describes a supervised framework that is able to profit from crowd-provided train-
ing data. The learning algorithm controls the cost of the crowd sourcing campaign w.r.t.
quality of the output wrapper. However, these novel approaches do not target the gen-
erated of RDF data.

Linked Data has been used to learn wrappers to extract RDF from the Web in re-
cent years. For example, [12] exploits Linked Data as a training data to find instances
of given classes such as universities and extract the attributes of these instances while
relying on the supervised wrapper induction approach presented in [14]. However, they
require a manual exploration of the Linked Data sources to generate their training data,
which leads to a considerable amount of manual effort. The DEIMOS project [19] is
similar to REX, as it aims at bringing to the Semantic Web the data that are published
through the rest of the Web. However, it focuses on the pages behind web forms. On-
toSyphon [17] operates in an “ontology-driven” manner: taking any ontology as input,
OntoSyphon uses the ontology to specify web searches that identify possible seman-



tic instances, relations, and taxonomic information, in an unsupervised manner. How-
ever, the approach makes use of extraction patterns that work for textual documents
rather than structured web pages. To the best of our knowledge, none of the existing
approaches covers all steps that are required to extract consistent RDF from the Web.
Especially, only [19] is able to generate RDF but does not check it for consistency. In
contrast, REX is the first approach that is scalable, low-cost, accurate and can generate
consistent RDF.

6 Conclusions

In this paper we presented the first framework for the consistent extraction of RDF from
templates Web pages. REX is available as open source15 Java implementation in an eas-
ily extendable fashion. Our framework uses the LOD Cloud as source for training data
that are used to learn web wrappers. The output of these wrappers is used to generate
RDF by the means of a URI disambiguation step as well as a data validation step. We
studied several sampling strategies and how they affect the F-measure achieved. Our
overall results show that although we can extract subject-object pairs with a high accu-
racy from well-templated websites, a lot of work still needs to be done in the area of
grounding these strings into an existing ontology. One solution to this problem might
be to use more context information during the disambiguation step. Moreover, more so-
phisticated approaches can be used for crawling websites offering structured navigation
paths towards target pages [5]. By these means, we should be able to eradicate some
of the sources of error in our extraction process. Our approach can be further improved
by combining it with crowdsourcing-based approaches for wrapper induction such as
ALFRED [9] or by learning more expressive wrappers. We thus regard this framework
as a basis for populating the Web of Data using Web pages by professional end-users.
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