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Abstract. Cancer genomics research has greatly benefited from high-
throughput technologies for the characterization of genomic alterations in
patients. These voluminous genomics datasets when supplemented with
the appropriate computational tools have led towards the identification
of ‘oncogenes’ and cancer pathways. However, if a researcher wishes to
exploit the datasets in conjunction with this extracted knowledge his cog-
nitive abilities need to be augmented through advanced visualizations. In
this paper, we present GenomeSnip, a visual analytics platform, which
facilitates the intuitive exploration of the human genome and displays the
relationships between different genomic features. Knowledge, pertaining
to the hierarchical categorization of the human genome, oncogenes and
abstract, co-occurring relations, has been retrieved from multiple data
sources and transformed a priori. We demonstrate how cancer experts
could use this platform to interactively isolate genes or relations of inter-
est and perform a comparative analysis on the 20.4 billion triples Linked
Cancer Genome Atlas (TCGA) datasets.
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1 Introduction

1.1 Integrative Genomics

Since the completion of the Human Genome Project in 2003 and the rising in-
fluence of high-throughput gene sequencing technologies, the biomedical domain
has witnessed a huge increase in genomics data. Advanced computation analy-
sis of these datasets, popularly grouped under Genome-wide Association studies
(GWAS) [20], allows the identification of several susceptible loci associated with
various types of cancer [8,32]. The knowledge on point alterations and onco-
genes, so extracted and catalogued, are available through multiple data sources
[10,11,29]. While GWAS have been successful to characterize isolated genomic



loci, network-based approaches [31] have also been devised to examine whether
a group of genes are implicated together in a disease of interest. Most of these
approaches rely on the coincidental, yet synchronized, involvement of a set of
genes to reveal interesting functional relationships [18,13]. ‘Co-occurrence’ of a
set of genes does not mandatorily imply physical ‘interactions’ of their products,
but rather macro-molecular associations on a higher, abstract level i.e. path-
ways and diseases. As the volume and the heterogeneity of genomics data rises,
providing scalable, integrated solutions for data management becomes difficult.

To address these integrative challenges, experts have resorted to Linked Data
and Semantic Web Technologies [6] for publishing biomedical datasets using Re-
source Description Framework (RDF) [2,24] to form the Life Sciences Linked
Open Data (LSLOD) Cloud. The newest member on the LSLOD Cloud is the
Linked Cancer Genome Atlas (TCGA) [26], the RDFized version of the Cancer
Genome Atlas4, a 20.4 billion triples data source characterizing the genomic and
clinical profiles of cancer patients. Linked TCGA contains information related
to the genomic alterations like methylations, gene expression changes, single
nucleotide polymorphisms (SNPs) and copy-number changes (CNVs), mapped
to the genomic loci. Along with the ease of representation and querying, us-
age of these technologies have presented advantages like integration with other
datasets, data mining and knowledge extraction [25,3]. Even though it has be-
come commonplace for computer scientists to use semantic web technologies, the
cognitive processes of a biomedical researcher need to be augmented through the
use of improved, interactive, intuitive, visual approaches [14].

1.2 Genomic Visualization

Genome browsers [16] have provided the simplest, yet effective mode of naviga-
tion through genomic datasets in an intuitive fashion. One of the most common
methods of implementation is to map the data points against the genomic co-
ordinates and visualize the datasets as charts or heatmaps [27]. Whereas linear
genome browsers have been very common until now [23,9,21], a new category of
circular visualizations is emerging to meet the needs of comparative genomics
[19]. Even as circular plots overcome the cognitive barriers for grasping relation-
ships between disjoint genomic features on an abstract level, the applications
miss the ‘interactive’ essence and compel the biomedical researcher to focus on
the entire genome.

Analyzing genomic datasets using the knowledge extracted through GWAS
has become of vital importance for the discovery of newer tumour risk hypotheses
and diagnosing cancer on a personalized basis [17,5]. On the other hand, studying
co-occurrence networks of genes present in common operons could lead to the
prediction of hidden protein interactions and functions [12]. Advanced genomic
visualization approaches, which infuse these insights into cancer research, still
need to be perfected to augment discovery.

4 http://cancergenome.nih.gov/
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In this paper, we present our approach towards the development of a se-
mantic visual analytics prototype, GenomeSnip, for the intuitive exploration of
the human genome and the interactive analysis of cancer datasets in conjunc-
tion with insights from GWAS and co-occurrence. Knowledge was retrieved from
multiple data sources, pertaining to the classification of the human genome, rela-
tionships between different genomic features, established oncogenes and somatic
alterations. We discuss how we generate the co-occurrence data cube, based on
which genes are implicated together in the same pathway/disease, or are men-
tioned in the same publication. We then demonstrate how these datasets are
assembled into a single, interactive visualization, the ‘Genomic Wheel’, which
displays the chromosomes as arcs in a circular layout and the chromosome co-
occurrence data cube as an overlay of chords. We finally showcase a comparative
evaluation against other state-of-the-art genomic visualization tools and discuss
the applicability of GenomeSnip using the Linked TCGA datasets.

2 Methodology

The GenomeSnip platform was conceptualized with the idea of ‘snipping’ or
clipping the human genome informatively in fragments through interaction with
an aggregative, circular visualization, the ‘Genomic Wheel’, and introspectively
analyzing those fragments in a ‘Genomic Tracks’ display.

2.1 Integration of Data Sources

The ‘Genomic Wheel’ comprises of two sets of geometrical structures, arcs which
form the perimeter of the ‘Genomic Wheel’ and chords which connect two arcs.
The information used to render these geometrical structures is derived from a
multitude of data sources and combined to form the ‘Genomic Wheel’.

Arcs Arcs illustrate the rich, hierarchical classification as subsequent layers.

1. UCSC Genome Browser: Ideograms are a schematic representation to
depict staining patterns on a tightly-coiled chromosome. These Chromo-
some Bands (Ideograms) were downloaded from the Mapping and Sequencing
Tracks Table in the Human Genome Assembly (GRCh37/hg19, Feb 2009),
available at the UCSC Genome Browser5 [16].

2. CellBase: Apart from the coordinates and descriptions of the protein-coding
genes, the REST API6 exposed by CellBase [4] also provides external infor-
mation on genomic variants like cancer-related mutations [10] and SNPs
[29] along the human genome. The genes are annotated using the HGNC
Nomenclature [22] and the positions are indicated by start/stop attributes.

GenomeSnip also incorporates the Cancer Gene Census7 [11], a catalogue of
oncogenes, which bear somatic and germline mutations in their sequences.

5 http://genome.ucsc.edu/
6 http://docs.bioinfo.cipf.es/projects/cellbase/wiki/
7 http://cancer.sanger.ac.uk/cancergenome/projects/census/
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Chords Genes may be involved in various pathways in the form of protein inputs
or catalysts, implicated in a certain disease, or mentioned in publications.

1. UniProt: The UniProt dataset exposed by the EBI RDF Platform8 pro-
vides disease-gene mappings on the execution of the question ‘What are the
preferred gene name and disease annotations of all human UniProt entries
that are known to be involved in a disease?’ as a SPARQL Query.

2. Kyoto Encyclopedia of Genes and Genomes (KEGG): KEGG [15] is
exposed as a SPARQL Endpoint [3] for providing pathway-gene linkages.

3. Pubmed2Ensembl: Pubmed2Ensembl9 is a customized service extended
to provide gene-related publication information. [1].

2.2 Generating Co-occurrence Data Cubes and Similarity Measures

Fig. 1. GenomeSnip Architecture

The mappings of genes with
external resources were ex-
tracted from the Chord data
sources a priori to instanti-
ate naive matching between
a pair of genes. In certain
cases, conversion of the native
identifiers (Ensembl, Entrez-
Gene, KEGG GeneIds) of the
genes to the HGNC nomen-
clature was carried out us-
ing the HGNC website [28].
For instance, if a pathway re-
source indicates that a set of
10 genes are involved, then we
establish a co-occurrence pair
between all possible pairs of
genes in the set. Hence, we would have 45, i.e. n(n - 1)/2 co-occurrence pairs. It
can then be inferred that a pair of genes co-occurs together in a certain number
of pathways as well as diseases and publications.

A co-occurrence data cube of 3 dimensions (segment 1, segment 2 and data
source type) and 2 measures (co-occurrence count and names of mapped re-
sources) is created between the 20000 genes extracted from CellBase. We also
store the total number of co-occurrence pairs generated for each chromosome
and the entire human genome (HG). This approach was extended to the up-
per levels of the genomic heirarchy, based on the location of the genes, and we
obtained similar matrices indicating the co-occurrence of a pair of ideograms
and subsequently chromosomes. A slice of the chromosome data cube (shown in
Table 1) describes the total number of co-occurrence pairs between two chromo-
somes, obtained from diseases (Dis), pathways (Path) and publications (Pub).

8 http://www.ebi.ac.uk/rdf/
9 http://pubmed2ensembl56.smith.man.ac.uk/
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Table 1. Slice of the Chromosome co-occurrence Data Cube.

Chr 1 Chr 2 Chr 3 ... Total
Dis Path Pub Dis Path Pub Dis Path Pub ... Dis Path Pub

Chr 1 28 4049 4522 15 4251 2915 19 4811 2667 ... 226 75044 49827
Chr 2 15 4251 2915 14 1662 3589 14 2532 1748 ... 155 42513 31424
Chr 3 19 4811 2667 14 2532 1748 16 1338 1390 ... 224 44310 26817

The data cubes are transformed to RDF (N-triples syntax) using the RDF Data
Cube Vocabulary [7] and are stored in a Triple Store using the Sesame API. The
‘Genomic Wheel’ retrieves slices of these data cubes for its assembly (Fig. 1).

We also calculate the similarity between any two chromosomes based on their
co-occurrence data. This calculation is inspired from Tversky’s feature-based
similarity measure [30], where the similarity between two entities is a weight-
based summation of their common features. For example, the similarity index
between Chromosome 1 and 2 is calculated as shown in Equation 1. The total
number of co-occurrence pairs between Chromosome 1 and 2, retrieved from
either diseases, pathways and publications (marked cells in Table 1), is divided
by the total number of co-occurrence pairs registered across the entire human
genome from that particular data source (for instance, HGTotalDis). α, β, γ are
the weights assigned to these fractions respectively.

Sim12 = α∗Chr1
⋂
Chr2|Dis

HGTotalDis
+β∗Chr1

⋂
Chr2|Path

HGTotalPath
+γ∗Chr1

⋂
Chr2|Pub

HGTotalPub
(1)

To calculate the relative similarity impact on the side of Chromosome 1, we
calculate the maximum similarity measure possible for Chromosome 1 using the
values of the last three columns in Table 1 (shown in Equation 2). We then
divide the similarity index previously calculated with this measure.

Sim1Max = α ∗ Chr1TotalDis

HGTotalDis
+ β ∗ Chr1TotalPath

HGTotalPath
+ γ ∗ Chr1TotalPub

HGTotalPub
(2)

2.3 Technologies and Availability

The GenomeSnip platform is a web-based client application developed using na-
tive web technologies like HTML5 Canvas, JavaScript and JSON. The advent
of HTML5 in the recent years allows the application to remove the dependence
on proprietary frameworks like Adobe Flash and Silverlight for interactivity,
whereas the support across traditional browsers improves the interoperability.
Whereas visualization libraries like D3JS10, which primarily rely on SVG, are
suitable for developing interactive visualizations for smaller datasets, the func-
tionality is deeply impacted when rendering larger datasets as SVG stores the
rendered objects directly in the browser DOM. Hence, it was prudent to use
HTML5 Canvas, which creates a raster graphic of the entire visualization prior

10 http://d3js.org
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to rendering in the browser window. GenomeSnip uses the KineticJS11 library,
an HTML5 Canvas JavaScript framework, that enables node nesting, layering,
caching and event handling.

In essence, GenomeSnip could be deployed from any Apache Server with
PHP5 and PHP-CURL support enabled. The platform communicates with the
Sesame Triple Store and the TCGA Endpoints using the SPARQL 1.1 protocol
and retrieves the results in JSON format. A public instance of GenomeSnip
is deployed at http://srvgal78.deri.ie/genomeSnip and could be accessed
using any modern browser with HTML5 support like Google Chrome 8+, Mozilla
Firefox 4.0+ and Internet Explorer 10. The distribution of the Linked TCGA
datasets and its respective endpoints are available at http://tcga.deri.ie.

3 GenomeSnip Platform

GenomeSnip is a semantic, visual analytics prototype devised to expedite knowl-
edge exploration and discovery in cancer research. Our approach relies on the
knowledge retrieval from various data sources to determine the co-occurrence
matrices between different genomic features and fuse these generated insights
with genomic datasets into an aggregated, interactive visualization. We have
combined the salient features of the linear genome browsers and circular plots,
and present an interactive alternative displaying only those genomic regions and
its inherent relations which are of actual interest to the cancer expert.

3.1 Genomic Wheel

The human genome is laid in a circular layout with different chromosomes form-
ing the arcs on the perimeter of the ‘Genomic Wheel’. The size of each chromo-
some is directly proportional to the arc length. The hierarchical categorization
of each chromosome forms the subsequent layers in the representative arc. Cur-
rently, the visualization takes into account four levels of this rich hierarchy -
chromosome, ideogram, gene and cancer point mutations along the sequence of
each gene. Due to the rich genetic diversity, the intial stage of the ‘Genomic
Wheel’ hides the ‘gene’ and the ‘point mutations’ layers and displays only the
‘chromosome’ and ‘ideogram’ layer, as shown in Fig. 2(A). By clicking down on
each arc, the represented chromosome is highlighted and flares out to display the
subsequent layers. The final stage of the visualization depicts all the layers, as
shown in Fig. 2(B). Those genes catalogued in the Cancer Gene Census, whose
gene sequences bear somatic and germline mutations responsible for cancer, are
represented using different shades of red to allow the cancer researcher to in-
tuitively differentiate between them. Hovering the mouse pointer over any gene
displays an information box, showing extra information on the gene.

Chords connect different components of the human genome based on the
co-occurrence data cubes and the similarity measures generated. At the chromo-
some level, the thickness of the chords is proportional to the relative similarity

11 http://kineticjs.com/
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Fig. 2. Genomic Wheel - Initial Stage (A) and Final Stage (B)

impact between two chromosomes i.e. the chord tapers between the connected
chromosomes based on the similarity impact on each side. The values of α, β
and γ used for generating the similarity measures in the initial layout is 1, 0.4
and 0.1 respectively. Hovering the mouse over each chord displays the slice of
co-occurrence matrix. At the genetic level the relation chords are represented us-
ing distinct colors (Red, green and blue for diseases, pathways and publications
respectively) to enable visual discernibility. Hovering over these chords display
the diseases, pathways or publications in which the connecting genes co-occur.

3.2 Genomic Tracks

Fig. 3. Genomic Tracks View

On clicking any gene, the
‘Genomic Tracks’ display is
launched with the instance
of the clicked gene visual-
ized. As the public proto-
type of GenomeSnip is con-
figured for interactive analysis
of the Linked TCGA datasets,
the cancer researcher has the
option to select any tumor
category and load the DNA
methylation and the exon ex-
pression datasets of the pa-
tients diagnosed with that tumor. Selection of the patient executes the SPARQL
Query (shown below) against the corresponding TCGA Endpoints and retrieves
his sequencing results in real-time. These datasets are represented using bar



charts (red and green respectively), whose X-coordinates are mapped to the ge-
nomic coordinates of the gene and the Y-coordinates indicate the beta value
or the RKPM value at that chromosomal position. The cancer researcher has
the option to launch multiple genes simultaneously in separate tabular panels
as shown in Fig. 3, and perform a comparative analysis. Clicking on a relation
chord linking two genes in the ‘Genomic Wheel’ launches the connected genes
in separate panels simultaneously. The ‘Genomic Tracks’ interface provides the
basic features, for zooming and panning across the length of the clicked gene.

SPARQL Query . Exon Expression results for a patient for the ERBB2 gene

PREFIX xsd : <http ://www. w3 . org /2001/XMLSchema#>
PREFIX tcga : <http :// tcga . d e r i . i e /schema/>
SELECT DISTINCT ∗ WHERE {
<PatientID> tcga : r e s u l t ? exonResult .
? exonResult tcga : chromosome ‘ ‘ 1 7 ’ ’ ; tcga :RPKM ? value ;

tcga : s t a r t ? s t a r t ; tcga : stop ? stop
FILTER( xsd : double (? s t a r t ) > 37844393 &&

xsd : double (? stop ) < 37884915) }

4 Comparative Evaluation of Genomic Visualizations

We carried out a preliminary evaluation to compare the features of GenomeS-
nip against a few of the popular, free genomic visualization tools available. In-
sights were gathered through a questionnaire (http://goo.gl/vnLtX4) embed-
ded within the GenomeSnip platform from 4 PhD students and 5 researchers.
Evaluators from the Biotechnology domain were accustomed with the UCSC
Genome Browser [16] and the Integrative Genomics Viewer (IGV) [23] due to
usage during their research in protein engineering. Evaluators researching in
Bioinformatics were familiar with modern genomic visualization tools.

A summarized list of features compared across the different solutions is shown
in Table 2. Whereas browsers like Savant [9] and IGV are established desktop
applications to visualize the human genome on a linear scale, they are unable
to display genomic relationships on an abstract level (location independent).
They provide extensive application programming interfaces (APIs) for the in-
tegration of third-party knowledge or visualization modules, but it necessitates
manual intervention. On the other hand, Circos [19] renders high-resolution,
static images of circular plots for the use in comparative genomics, but these
cannot be dynamically updated to focus on any genomic region of interest. In
terms of feature comparison, TCGA’s Regulome Explorer12 is closely related to
GenomeSnip, with additional visualization of datasets in the form of networks
and scatter plots and an example on the integration of PubMed literature for
analysis. However, no information was currently available on the integration of
GWAS insights into the platform and simultaneous analysis of the datasets.

12 http://explorer.cancerregulome.org/
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Table 2. Comparative Evaluation against popular genomic visualization applications.

UCSC IGV Savant GenomeMaps Circos Regulome GenomeSnip

Linear Coordinates 3 3 3 3 7 3 3

Circular Plot 7 7 7 7 3 3 3

Web Interface 3 7 7 3 7 3 3

Data Upload 7 3 3 3 7 7 7

Third-party modules 7 3 3 7 7 7 7

TCGA Demonstration 3 3 7 7 3 3 3

GWAS Insights 7 7 7 7 3 7 3

Chromosomal Relations 7 7 7 7 3 3 3

Simultaneous Analysis 3 3 7 7 3 7 3

Knowledge Integration 7 3 3 7 3 3 3

Other Visualizations Heatmap Heatmap 7 7 7 Network 7

Dynamicity 3 3 3 3 7 3 3

5 Discussion

With the rise of high-throughput gene sequencing technologies, data analy-
sis has replaced data generation as the rate-limiting step for the interpreta-
tion of genomic patterns and discovery of newer insights. Most of the popular
genome browsers provide navigation across the human genome in a linear fash-
ion. Whereas automated mining tools are more adept towards the linear genomic
analysis, the perceptive faculties of humans are more developed towards inter-
preting patterns in depth compared to length. Moreover, linear visualizations
fail to account for inter- and intra-chromosomal relations, which could be easily
interpreted and used by humans but difficult for machines. Our approach leading
towards the development of GenomeSnip was inspired from circular plots but it
overcomes the shortcomings of popular circular visualization tools available. As
the assembly of the ‘Genomic Wheel’ is comprised of the hierarchical classifica-
tion of the human genome and the co-occurrence relationships, represented as
RDF Data Cubes, the ability to integrate other data sources is leveraged and
information like disease-associated mutations can be easily visualized.

5.1 Applicability

1. Formulating Improved Hypotheses: By integrating the extracted knowl-
edge pertaining to established cancer genes and pathways to the largest
dataset of the LSLOD Cloud, and making it accessible through an intu-
itive, interactive visualization, the GenomeSnip Browser would allow cancer
experts to formulate newer risk hypotheses. Interpreting these insights in
the context of available knowledge in literature and pathways and isolating
genomic segments of interests, cancer experts could perform a comparative
analysis using the Linked TCGA datasets as a training set and visually val-
idate their hypotheses.

2. Discovering Protein Interactions: Use of co-occurrence networks of genes
has led to the prediction of hidden protein-protein interactions and discov-
ery of protein functions [12]. The visual discernibility of the co-occurrence
pairs has been increased by proportionating the strength of co-occurrence



(more common pathways and publications) to the thickness of the chords
connecting them. Analysing highly co-occurrent gene pairs in the context of
gene/protein expression datasets of Linked TCGA would lead towards the
in silico discovery of hidden interactions between their translated proteins.

3. Predicting Tumour Risk: One of the most pressing challenges in GWAS
is the application of the study findings for the development of personalized
genomic medicine and diagnostics, by improved integration of the genetic
studies and the generated insights and considering the genetic variation be-
tween different individuals. As such, we hope to allow clinical practitioners
to upload their patient’s genomic datasets and evaluate the alterations and
expression levels against those patients registered under the TCGA project.
This would facilitate the clinician to make informed, medical decisions, aug-
mented through input from other knowledge sources.

5.2 Future Work

Prostate adenocarcinoma, which is one of the most common malignancy to af-
fect men, could be diagnosed through a combined evaluation of an individual’s
genomic and clinical data on a personalized scale [5]. We would like to integrate
existing models into the GenomeSnip platform, to further assist the cancer re-
searcher in the task of predicting prostate cancer risk in new patients. We hope to
provide an ‘interaction’ overlay as an extra dimension to our visualization, along
with the current ‘co-occurrence’ overlay, by integrating knowledge on protein-
protein interactions, gene co-expression and functions. In the current version,
the ‘point mutations’ layer in the ‘Genomic Wheel’ is not interlinked with other
segments. We could extract further information like disease variant mutations
from UniProt to address this. Finally, we would like to improve the granularity
of the ‘Genomic Wheel’ visualization and extensively test the user experience
and the usability of this platform by conducting a user-driven evaluation.

6 Conclusion

In this paper, we present our approach leading towards the conceptualization of a
semantic, visual analytics prototype GenomeSnip, developed for the intuitive ex-
ploration of the human genome with embedded insights from Genome-wide Asso-
ciation Studies (GWAS) and Co-occurrence data of genomic features. We present
the selection of various data sources which catalogue the extracted GWAS in-
sights and gene-related mappings, and the transformation of this knowledge to
generate co-occurrence data cubes and similarity measures between different
genomic features. We assemble all this information to develop an aggregative,
interactive visualization, the ‘Genomic Wheel’, for the cancer researchers to in-
tuitively navigate across the human genome and select fragments of interest. The
cancer researchers can analyze the 20.4 billion triples Linked TCGA datasets in
the context of different selections simultaneously. We finally discuss the different
usage scenarios and future directions for this project.
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