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ABSTRACT
The Data Web contains a wealth of knowledge on a large
number of domains. Question answering over interlinked
data sources is challenging due to two inherent characteris-
tics. First, different datasets employ heterogeneous schemas
and each one may only contain a part of the answer for a
certain question. Second, constructing a federated formal
query across different datasets requires exploiting links be-
tween the different datasets on both the schema and instance
levels. We present a question answering system, which trans-
forms user supplied queries (i.e. natural language sentences
or keywords) into conjunctive SPARQL queries over a set of
interlinked data sources. The contribution of this paper is
two-fold: Firstly, we introduce a novel approach for deter-
mining the most suitable resources for a user-supplied query
from different datasets (disambiguation). We employ a hid-
den Markov model, whose parameters were bootstrapped
with different distribution functions. Secondly, we present a
novel method for constructing a federated formal queries us-
ing the disambiguated resources and leveraging the linking
structure of the underlying datasets. This approach essen-
tially relies on a combination of domain and range infer-
ence as well as a link traversal method for constructing a
connected graph which ultimately renders a corresponding
SPARQL query. The results of our evaluation with three
life-science datasets and 25 benchmark queries demonstrate
the effectiveness of our approach.

Categories and Subject Descriptors
I.2.7 [Artificial intelligence]:

General Terms
Algorithms, Human Factors
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1. INTRODUCTION
There is a large and increasing quantity of structured data
available on the Web. Traditional information retrieval ap-
proaches based on keyword search are user-friendly but can-
not exploit the internal structure of data due to their bag-
of-words semantic. For searching information on the Data
Web we need similar user friendly approaches i.e. keyword-
base interfaces, which leverage the internal structure of the
data. Also, Question Answering is a specialized form of in-
formation retrieval. A Question Answering system attempts
to extract correct answers to questions posed in natural lan-
guage. Using the structure of data in retrieval process has
two prominent advantages. Firstly, it approaches the in-
formation retrieval systems to question answering systems.
Secondly, it enables us to easily integrate information from
different datasets.

In this paper we present an approach for question answer-
ing over a set of interlinked data sources. We have to deal
with two challenges: A first challenge is that information for
answering a certain question can be spread among different
datasets employing heterogeneous schemas. This makes the
mapping of the input keywords to resources more challeng-
ing when compared to querying a single dataset. The second
challenge is constructing a formal query from the matched
resources across different datasets by exploiting links be-
tween the different datasets on the schema and instance lev-
els.

In order to address these challenges, our approach resembles
a horizontal search, where query segments derived from an
input query are matched against all available datasets. We
employ a Hidden Markov Model (HMM) to obtain the op-
timal input query segmentation and disambiguation of pos-
sible matches in a single step. We test different bootstrap-
ping methods for the HMM parameters using various dis-
tributions (Normal, Zipf, Uniform) as well as an algorithm
based on Hyperlink-Induced Topic Search (HITS). Our pro-
posed functions for HMM parameters produce the best re-
sults for both segmentation and disambiguation. Then, we
construct a formal query (expressed in SPARQL) using the
disambiguated matches by traversing links in the underlying
datasets. By taking links between the matched resources (in-
cluding owl:sameAs links) into account we obtain the min-
imum spanning graph covering all matches in the different
datasets.



As a test bed for evaluating our approach we used the Sider 1,
Diseasome [8]2 and Drugbank [32]3 datasets published in
RDF. Sider contains information about drugs and their side
effects. Diseasome contains information about diseases and
genes associated with these diseases. Drugbank is a compre-
hensive knowledge base containing information about drugs,
drug target (i.e. protein) information, interactions and en-
zymes. As it can be seen in Figure 1 the classes representing
drugs in Drugbank and Sider are linked using owl:sameAs

and diseases from Diseasome are linked to drugs in Drug-
bank using possible Drug and possible Disease target.
Diseases and side effects between Sider and Diseasome are
linked using the owl:sameAs property. Note that in this
figure the dotted arrows represent the properties between
classes inside a dataset.

Our approach can answer queries with the following three
characteristics:
• Queries requiring fused information: An example

is the query: “side effects of drugs used for Tubercu-
losis”. Tuberculosis is defined in Diseasome, drugs for
curing Tuberculosis are described in Drugbank, while
we find their side effects in Sider.
• Queries targeting combined information: An ex-

ample depicted in Figure 2 is the query: “side effect
and enzymes of drugs used for ASTHMA”. Here the
answer to that query can only be obtained by joining
data from Sider (side effects) and Drugbank (enzymes,
drugs).
• Query requiring keyword expansion: An exam-

ple is the query “side effects of Valdecoxib”. Here the
drug Valdecoxib can not be found in Sider, however,
its synonym Bextra is available via Sider.

To the best of our knowledge our approach is the first ap-
proach for answering questions on interlinked datasets by
constructing a federated SPARQL query. Our main contri-
butions can be summed up as follows:
• We extend the Hidden Markov Model approach for dis-

ambiguating resources from different datasets.
• We present a novel method for constructing formal

queries using disambiguated resources and leveraging
the interlinking structure of the underlying datasets.
• We developed a benchmark consisting of 25 queries

for a testbed in the life-sciences. The evaluation of
our implementation demonstrates its feasibility with
an f-measure of 90%.

This paper is organized as follows: In the subsequent section,
we present the problem at hand in more detail and some
of the notations and concepts used in this work. Section 3
presents the proposed disambiguation method in detail along
with the evaluation of the bootstrapping. In section 4, we
then present the key steps of our algorithm for constructing
a conjunctive query. Our evaluation results are presented in
the section 5 while related work is reviewed in the section 6.
We close with a discussion and future work.

2. PROBLEM AND PRELIMINARIES
In this section, we introduce some crucial notions employed
throughout the paper and describe the main challenges that

1http://sideeffects.embl.de/
2http://diseasome.kobic.re.kr/
3http://www.drugbank.ca/
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Figure 1: Schema interlinking for three datasets i.e.
DrugBank, Sider, Diseasome.
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Figure 2: Resources from three different datasets
are fused at the instance level in order to exploit in-
formation which are spread across diverse datasets.

arise when transforming user queries to formal, conjunctive
queries on linked data.

An RDF knowledge base can be viewed as a directed, labeled
graph Gi = (Vi, Ei) where Vi is a set of nodes comprising all
entities and literal property values, and Ei is a set of directed
edges, i.e. the set of all properties. We define linked data
in the context of this paper as a graph G = (V =

⋃
Vi, E =⋃

Ei) containing a set of RDF knowledge bases, which are
linked to each other in the sense, that their sets of nodes
overlap, i.e. that Vi ∩ Vj 6= ∅.

In this work we focus on user-supplied queries in natural
language, which we transform into an ordered sets of key-
words by tokenizing, stop-word removal and lemmatization.
Our input query thus is an n-tuple of keywords, i.e. Q =
(k1, k2, ..., kn).

Challenge 1: Resource Disambiguation. In the first
step, we aim to map the input keywords to a suitable set
of entity identifiers, i.e. resources R = {r1, r2...rm}. Note,
that several adjacent keywords can be mapped to a single re-
source, i.e. m ≤ n. In order to accomplish this task, the in-
put keywords have to be grouped together to segments. For
each segment, a suitable resource is then to be determined.
The challenge here is to determine the right segment granu-



larity, so that the most suitable mapping to identifiers in the
underlying knowledge base can be retrieved for constructing
a conjunctive query answering the input query.

For example, the question ‘What is the side effects of drugs
used for Tuberculosis?’ is transformed to the 4-keyword
tuple (side, effect, drug, Tuberculosis). This tuple can be
segmented into (‘side effect drug’, ‘Tuberculosis’ ) or (‘side
effect’, ‘drug’, ‘Tuberculosis’ ). Note that the second segmen-
tation is more likely to lead to a query that contains the re-
sults intended by the user. In addition to detecting the right
segments for a given input query, we also have to map each
of these segments to a suitable resource in the underlying
knowledge base. This step is dubbed entity disambiguation
and is of increasing importance since the size of knowledge
bases and schemes heterogeneity on the Linked Data Web
grows steadily. In this example, the segment ‘drug’ is am-
biguous when querying both Sider and Diseasome because it
may refer to the resource diseasome:Tuberculosis describ-
ing the disease Tuberculosis or to the resource
sider:Tuberculosis being the side effect caused by some
drugs.

Challenge 2: Query Construction. Once the segmen-
tation and disambiguation have been completed, adequate
SPARQL queries have to be generated based on the detected
resources. In order to generate a conjunctive query, a con-
nected subgraph G′ = (V ′, E′) of G called the query graph
has to be determined. The intuition behind constructing
such a query graph is that it has to fully cover the set of
mapped resources R = {r1, ..., rm} while comprising a min-
imal number of vertices and edges (|V ′| + |E′|). In linked
data, mapped resources ri may belong to different graphs
Gi; thus the query construction algorithm must be able to
traverse the links between datasets at both schema and in-
stance levels. With respect to the previous example, af-
ter applying disambiguation on the identified resources, we
would obtain the following resources from different datasets:
sider:sideEffect, diseasome:possibleDrug, diseasome:1154.
The appropriate conjunctive query contains the following
triple patterns:

1. diseasome:1154 diseasome:possibleDrug ?v1 .

2. ?v1 owl:sameAs ?v2 .

3. ?v2 sider:sideEffect ?v3 .

The second triple pattern bridges between the datasets Drug-
bank and Sider.

2.1 Resource Disambiguation
In this section, we present the formal notations for address-
ing the resource disambiguation challenge, aiming at map-
ping the n-tuple of keywords Q = (k1, k2, ..., kn) to the m-
tuple of resources R = (r1, ..., rm).

Definition 1 (Segment and Segmentation). For a
given query Q = (k1, k2, ..., kn), the segment S(i,j) is the
sequence of keywords from start position i to end position
j, i.e., S(i,j) = (ki, ki+1, ..., kj). A query segmentation is an
m-tuple of segments SG(Q) = (S(0,i), S(i+1,j), ..., S(l,n)) with
non-overlapping segments arranged in a continuous order,
i.e. for two continuous segments Sx, Sx+1 : Start(Sx+1) =
End(Sx) + 1. The concatenation of segments belonging to a
segmentation forms the corresponding input query Q.

Valid Segments Samples of Candidate Resources
side effect 1. sider:sideEffect 2. sider:side_effects

drug
1. drugbank:drugs 2. class:Offer
3. sider:drugs 4. diseasome:possibledrug

tuberculosis 1. diseases:1154 2. side_effects:C0041296

Table 1: Generated segments and samples of candi-
date resources for a given query.

Definition 2 (Resource Disambiguation). Let the seg-
mentation SG′ = (S1

(0,i), S
2
(i+1,j), ..., S

x
(l,n)) be the suitable

segmentation for the given query Q. Each segment Si of
SG′ is first mapped to a set of candidate resources Ri =
{r1, r2...rh} from the underlying knowledge base. The aim of
the disambiguation step is to detect an m-tuple of resources
(r1, r2, ..., rm) ∈ R1 × R2 × . . . × Rm from the Cartesian
product of the sets of candidate resources for which each ri
has two important properties: First, it is among the highest
ranked candidates for the corresponding segment with respect
to the similarity as well as popularity and second it shares
a semantic relationship with other resources in the m-tuple.
Semantic relationship refers to the existence of a path be-
tween resources.

The disambiguated m-tuple is appropriate if a query graph
[capable of answering the input query] can be constructed
using all resources contained in that m-tuple. The order
in which keywords appear in the original query is partially
significant for mapping. However, once a mapping from key-
words to resources is established the order of the resources
does not affect the SPARQL query construction anymore.
This is a fact that users will write strongly related keywords
together, while the order of only loosely related keywords
or keyword segments may vary. When considering the or-
der of keywords, the number of segmentations for a query
Q consisting of n keywords is 2(n−1). However, not all these
segmentations contain valid segments. A valid segment is
a segment for which at least one matching resource can be
found in the underlying knowledge base. Thus, the number
of segmentations is reduced by excluding those containing
invalid segments.

Algorithm 1 shows a naive approach for finding all valid seg-
ments when considering the order of keywords. It starts with
the first keyword in the given query as first segment, then
adds the next keyword to the current segment and checks
whether this addition would render the new segment invalid.
This process is repeated until we reach the end of the query.
The input query is usually short. The number of keywords
is mainly less than 6 4; therefore, this algorithm is not ex-
pensive. Table 1 shows the set of valid segments along with
some samples of the candidate resources computed for the
previous example using the naive algorithm. Note that ’side
effect drug’, ’side’, ’effect’ are not a valid segments.

2.2 Construction of Conjunctive Queries
The second challenge addressed by this paper tackles the
problem of generating a federated conjunctive query lever-
aging the disambiguated resources i.e. R = (r1, ..., rm).
Herein, we consider conjunctive queries being conjunctions

4http://www.keyworddiscovery.com/keyword-
stats.html?date=2012-08-01



Data: q: n-tuple of keywords, knowledge base
Result: SegmentSet: Set of segments

1 SegmentSet=new list of segments;
2 start=1;
3 while start <= n do
4 i = start;
5 while S(start,i) is valid do
6 SegmentSet.add(S(start,i));

7 i++;

8 end
9 start++;

10 end

Algorithm 1: Naive algorithm for determining all valid seg-
ments taking the order of keywords into account.

of SPARQL algebra triple patterns5. We leverage the disam-
biguated resources and implicit knowledge about them (i.e.
types of resources, interlinked instances and schema as well
as domain and range of resources with the type property) to
form the triple patterns.

For instance, for the running query which asks for a list of
resources (i.e. side effects) which have a specific characteris-
tic in common (i.e. caused by drugs used for Tuberculosis’).
Suppose the resources identified during the disambiguation
process are: sider:sideEffect, Diseasome:possibleDrug

as well as Diseasome:1154. Suitable triple patterns which
are formed using the implicit knowledge are:
1. Diseasome:1154 Diseasome:possibleDrug ?v1 .

2. ?v1 owl:sameAs ?v2 .

3. ?v2 sider:sideEffect ?v3 .

The second triple pattern is formed based on interlinked data
information. This triple connects the resources with the type
drug in the dataset Drugbank to their equivalent resources
with the type drug in the Sider dataset using owl:sameAs

link. These triple patterns satisfy the information need ex-
pressed in the input query. Since most of common queries
commonly lack of a quantifier, thus conjunctive queries to
a large extend capture the user information need. A con-
junctive query is called query graph and formally defined as
follows.

Definition 3 (Query Graph). Let a set R = {r1, ..., rn}
of resources (from potentially different knowledge bases) be
given. A query graph QGR = (V ′, E′) is a directed, con-
nected multi-graph such that R ⊆ E′ ∪V ′. Each edge e ∈ E′
is a resource that represents a property from the underly-
ing knowledge bases. Two nodes n and n′ ∈ V ′ can be
connected by e if n (resp. n′) satisfies the domain (resp.
range) restrictions of e. Each query graph built by these
means corresponds to a set of triple patterns. i.e. QG ≡
{(n, e, n′)|(n, n′) ∈ V 2 ∧ e ∈ E}.

3. RESOURCE DISAMBIGUATION USING
HIDDEN MARKOV MODELS

In this section we describe how we use a HMM for the con-
current segmentation of queries and disambiguation of re-
sources. First, we introduce the notation of HMM param-
eters and then we detail how we bootstrap the parameters

5Throughout the paper, we use the standard notions of the
RDF and SPARQL specifications, such as graph pattern,
triple pattern and RDF graph.

of our HMM for solving the query segmentation and entity
disambiguation problems.

Hidden Markov Models: Formally, a hidden Markov
model (HMM) is a quintuple λ = (X,Y,A,B, π) where:
• X is a finite set of states. In our case, X is a subset of

the resources contained in the underlying graphs.
• Y denotes the set of observations. Herein, Y equals to

the valid segments derived from the input n-tuple of
keywords.
• A : X × X → [0, 1] is the transition matrix of which

each entry aij = is the transition probability Pr(Sj |Si)
from state i to state j;
• B : X × Y → [0, 1] represents the emission matrix.

Each entry bih = Pr(h|Si) is the probability of emit-
ting the symbol h from state i;
• π : X → [0, 1] denotes the initial probability of states.

Commonly, estimating the hidden Markov model parame-
ters is carried out by employing supervised learning. We rely
on bootstrapping, a technique used to estimate an unknown
probability distribution function. Specifically, we bootstrap6

the parameters of our HMM by using string similarity met-
rics (i.e., Levenshtein and Jaccard) for the emission proba-
bility distribution and more importantly the topology of the
graph for the transition probability. The results of the eval-
uation show that by using these bootstrapped parameters,
we achieve a mean reciprocal rank (MRR) above 84%.

Constructing the State Space: A-priori, the state space
should be populated with as many states as there are en-
tities in the knowledge base. The number of states in X
is thus potentially large given that X will contain all RDF
resources contained in the graph G on which the search is
to be carried out, i.e. X = V ∪ E. For DBpedia, for ex-
ample, X would contain more than 3 million states. To
reduce the number of states, we exclude irrelevant states
based on the following observations: (1) A relevant state
is a state for which a valid segment can be observed (we
described the recognition of valid segments in Section 2.1).
(2) A valid segment is observed in a state if the probability
of emitting that segment is higher than a given threshold
θ. The probability of emitting a segment from a state is
computed based on the similarity score which we describe
in Section 3.1. Thus, we can prune the state space such
that it contains solely the subset of the resources from the
knowledge bases for which the emission probability is higher
than θ. In addition to these states, we add an unknown
entity state (UE) which represents all entities that were
pruned. Based on this construction of state space, we are
now able to detect likely segmentations and disambiguation
of resources, the segmentation being the labels emitted by
the elements of the most likely sequence of states. The dis-
ambiguated resources are the states determined as the most
likely sequence of states.

Extension of State Space with reasoning: A further
extension of the state space can be carried out by including
resources inferred from lightweight owl:sameAs reasoning.
We precomputed and added the triples inferred from the
symmetry and transitivity property of the owl:sameAs rela-

6For the bootstrapping test, we used 11 sample queries from
the QALD benchmark 2012 training dataset.



tion. Consequently, for extending the state space, for each
state representing a resource x we just include states for all
resources y, which are in an owl:sameAs relation with x.

3.1 Bootstrapping the Model Parameters
Our bootstrapping approach for the model parameters A
and π is based on the HITS algorithm and semantic relations
between resources in the knowledge base. The rationale is
that the semantic relatedness of two resources can defined in
terms of two parameters: the distance between the two re-
sources and the popularity of each of the resources. The dis-
tance between two resources is the path length between those
resources. The popularity of a resource is simply the connec-
tivity degree of the resource with other resources available in
the state space. We use the HITS algorithm for transform-
ing these two values to hub and authority values (as detailed
below). An analysis of the bootstrapping shows significant
improvement of accuracy due to this transformation. In the
following, we first introduce the HITS algorithm, since it is
employed within the functions for computing the two HMM
parameters A and π. Then, we discuss the distribution func-
tions proposed for each parameter. Finally, we compare our
bootstrapping method with other well-known distribution
functions.

Hub and Authority of States. Hyperlink-Induced Topic
Search (HITS) is a link analysis algorithm that was devel-
oped originally for ranking Web pages [13]. It assigns a hub
and authority value to each Web page. The hub value es-
timates the value of links to other pages and the authority
value estimates the value of the content on a page. Hub
and authority values are mutually interdependent and com-
puted in a series of iterations. In each iteration the authority
value is updated to the sum of the hub scores of each refer-
ring page; and the hub value is updated to the sum of the
authority scores of each referring page. After each iteration,
hub and authority values are normalized. This normaliza-
tion process causes these values to converge eventually.

Since RDF data forms a graph of linked entities, we em-
ploy a weighted version of the HITS algorithm in order to
assign different popularity values to the states based on the
distance between states. We compute the distance between
states employing weighted edges. For each two states Si and
Sj in the state space, we add an edge if there is a path of
maximum length k between the two corresponding resources.
Note that we also take property resources into account when
computing the path length.The weight of the edge between
the states Si and Sj is set to wi,j = k − pathLength(i, j),
where pathLength(i, j) is the length of the path between the
corresponding resources. The authority of a state can now
be computed by: auth(Sj) =

∑
Si

wi,j × hub(Si). The hub

value of a state is given by hub(Sj) =
∑
Si

wi,j × auth(Si).

These definitions of hub and authority for states are the
foundation for computing the transition and initial proba-
bilities in the HMM.

Transition Probability. To compute the transition prob-
ability between two states, we take both, the connectivity of
the whole of space state as well as the weight of the edge be-
tween the two states, into account. The transition probabil-

ity value decreases with increasing distance between states.
For example, transitions between entities in the same triple
have a higher probability than transitions between entities in
triples connected through auxiliary intermediate entities. In
addition to edges representing the shortest path between en-
tities, there is an edge between each state and the unknown
entity (UE) state. The transition probability of state Sj fol-
lowing state Si is denoted as aij = Pr(Sj |Si). Note that the
condition

∑
Sj

Pr(Sj |Si) = 1 holds.

The transition probability from the state Si to UE is defined
as:

aiUE = Pr(UE|Si) = 1− hub(Si)

Consequently, a good hub has a smaller probability of tran-
sition to UE. The transition probability from the state Si to
the state Sj is computed by:

aij = Pr(Sj |Si) =
auth(Sj)∑

∀aik>0

auth(Sk)
× hub(Si)

Here, the probability from state Si to the neighboring states
are uniformly distributed based on the authority values.
Consequently, states with higher authority values are more
probable to be met.

Initial Probability. The initial probability π(Si) is the
probability that the model assigns to the initial state Si in
the beginning. The initial probabilities fulfill the condition∑
∀Si

π(Si) = 1. We denote states for which the first keyword

is observable by InitialStates. The initial states are defined
as follows:

π(Si) =
auth(Si) + hub(Si)∑

∀Sj∈InitialStates

(auth(Sj) + hub(Sj))

In fact, π(Si) of an initial state is uniformly distributed on
both hub and authority values.

Emission Probability. Both the labels of states and the
segments contain sets of words. For computing the emis-
sion probability of the state Si and the emitted segment h,
we compare the similarity of the label of state Si with the
segment h in two levels, namely string-similarity and set-
similarity level:
• The string-similarity level measures the string similar-

ity of each word in the segment with the most similar
word in the label using the Levenshtein distance.
• The set-similarity level measures the difference between

the label and the segment in terms of the number of
words using the Jaccard similarity.

Our similarity score is a combination of these two metrics.
Consider the segment h = (ki, ki+1, ..., kj) and the words
from the label l divided into a set of keywords M and stop-
words N , i.e. l = M ∪N . The total similarity score between
keywords of a segment and a label is then computed as fol-
lows:

bih = Pr(h|Si) =

j∑
t=i

argmax
mi∈M

(σ(mi, kt))

|M ∪ h|+ 0.1 ∗ |N |
This formula is essentially an extension of the Jaccard sim-
ilarity coefficient. The difference is that we use the sum of



the string-similarity score of the intersections in the numer-
ator instead of the cardinality of intersections. As in the
Jaccard similarity, the denominator comprises the cardinal-
ity of the union of two sets (keywords and stopwords). The
difference is that the number of stopwords is down-weighted
by the factor 0.1 to reduce their influence since they do not
convey much supplementary semantics.

Viterbi Algorithm for the K-best Set of Hidden States.
The optimal path through the HMM for a given sequence
(i.e. input query keywords) generates disambiguated re-
sources which form a correct segmentation. The Viterbi
algorithm or Viterbi path [29] is a dynamic programming
approach for finding the optimal path through a HMM for a
given input sequence. It discovers the most likely sequence
of underlying hidden states that might have generated a
given sequence of observations. This discovered path has
the maximum joint emission and transition probability of
the involved states. The sub-paths of this most likely path
also have the maximum probability for the respective sub se-
quence of observations. The naive version of this algorithm
just keeps track of the most likely path. We extended this al-
gorithm using a tree data structure to store all possible paths
generating the observed query keywords. Thus, our imple-
mentation can provide a ranked list of all paths generating
the observation sequence with the corresponding probability.
After running the Viterbi algorithm for our running exam-
ple, the disambiguated resources are: {sider:sideEffect, dis-
easome:possibleDrug, diseases:1154} and consequently the
detected segmentation is: {side effect, drug, Tuberculosis}.

3.2 Evaluation of Bootstrapping
We evaluated the accuracy of our approximation of the tran-
sition probability A (which is basically a kind of uniform dis-
tribution) in comparison with two other distribution func-
tions, i.e., Normal and Zipfian distributions. Moreover, to
measure the effectiveness of the hub and authority values,
we ran the distribution functions with two different inputs,
i.e. distance and connectivity degree values as well as hub
and authority values. Note that for a given edge the source
state is the one from which the edge originates and the sink
state is the one where the edge ends. We ran the distri-
bution functions separately with X being defined as the
weighted sum of the normalized distance between two states
and normalized connectivity degree of the sink state: Xij =
α×distance(Si−Sj) + (1−α)× (1− connectivityDegreeSj ).
Similarly, Y was defined as the weighted sum of the hub of
the source state and the authority of the sink state: Y =
α × hub(Si) + (1 − α) × (1 − authorithysj ). In addition,
to measuring the effectiveness of hub and authority, we also
measured a similar uniform function with the input param-
eters distance and connectivity degree defined as:

aij =
distance(Si − Sj)∑

∀Sk>0

distance(Si − Sk)
∗ connectivitydegree(Si)

Given that the model at hand generates and scores a ranked
list of possible tuples of resources, we compared the re-
sults obtained with the different distributions by looking
at the mean reciprocal rank (MRR) [30] they achieve. For
each query qi ∈ Q in the benchmark, we compare the rank
ri assigned by different algorithms with the correct tuple
of resources and set MRR(A) = 1

|Q|
∑
qi

1
ri

. Note that if

the correct tuple of resources was not found, the recipro-
cal rank was assigned the value 0. We used 11 queries
from QALD2-Benchmark 2012 training dataset for boot-
strapping7. Figure 3 shows theMRR achieved by bootstrap-
ping the transition probability of this model with 3 differ-
ent distribution functions per query in 14 different settings.
Figure 4 compares the average MRR for different functions
employed for bootstrapping the transition probability per
setting. Our results show clearly that the proposed func-
tion is superior to all other settings and achieves an MRR
of approximately 81%. A comparison of the MRR achieved
when using hub and authority with that obtained when us-
ing distance and connectivity degree reveals that using hub
and authority leads to an 8% improvement on average. This
difference is in Zipfian and Normal settings trivial, but very
significant in the case of a uniform distribution. Essentially,
HITS fairly assigns qualification values for the states based
on the topology of the graph.
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Figure 4: Comparison of different functions and set-
tings for bootstrapping the transition probability.
Uni stands for the uniform distribution, while Zip
stands for the Zipfian and Norm for the normal dis-
tribution.

We bootstrapped the emission probability B with two distri-
bution functions based on (1) Levenshtein similarity metric,
(2) the proposed similarity metric as a combination of the
Jaccard and Levenshtein measures. We observed the MRR
achieved by bootstrapping the emission probability of this
model employing those two similarity metrics per query in
two settings (i.e. natural and reverse order of query key-
words). The results show no difference in MRR between
these two metrics in the natural order. However, in the
reverse order the Levenshtein metric failed for 81% of the
queries, while no failure was observed with the combination
of Jaccard and Levenshtein. Hence, our combination is ro-
bust with regard to change of input keyword order. For
bootstrapping the initial probability π, we compared the
uniform distribution on both – hub and authority – val-
ues with a uniform distribution on the number of states for
which the first keyword is observable. The result of this
comparison shows a 5% improvement for the proposed func-
tion. Figure 5 shows the mean of MRR for different values
of the threshold θ employed for prunning the state space. A
high value of θ prevents inclusion of some relevant resources

7
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Figure 3: MRR of different distributions per query for bootstrapping the transition probability.

and a low value adds irrelevant resources. It can be observed
that the optimal value of θ is in the range [0.6, 0.7]. Thus,
we set θ to 0.7 in the rest of our experiments.
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Figure 5: Mean MRR for different values of θ.

4. QUERY GRAPH CONSTRUCTION
The goal of query graph construction is generating a con-
junctive query (i.e. SPARQL query) from a given set of
resource identifiers i.e., R = {r1, r2, ...rm}. The core of
SPARQL queries are basic graph patterns, which can be
viewed as a query graph QG. In this section, we first dis-
cuss the formal considerations underlying our query graph
generation strategy and then describe our algorithm for gen-
erating the query graph. The output of this algorithm is a
set of graph templates. Each graph template represents a
comprehensive set of query graphs, which are isomorphic re-
garding edges. A query graph A is isomorphic regarding its
edges to a query graph B, if A can be derived from B by
changing the labels of edges.

4.1 Formal Considerations
A query graph QG consists of a conjunction of triple pat-
terns denoted by (si, pi, oi). When the set of resource iden-
tifiers R is given, we aim to generate a query graph QG
satisfying the completeness restriction, i.e., each ri in R
maps to at least one resource in a triple pattern contained
in QG. For a given set of resources R, the probability of
a generated query graph Pr(QG|R) being relevant for an-
swering the information need depends on the probability of
all corresponding triple patterns to be relevant. We assume
that triple patterns are independent with regard to the rele-
vance probability. Thus, we define the relevance probability
for a QG as product of the relevance probabilities of the n
containing triple patterns. We denote the triple patterns
with (si, pi, oi)i=1...n and their relevance probability with
Pr(si, pi, oi), thus rendering Pr(QG|R) =

∏n
i=1 Pr(si, pi, oi).

We aim at constructing QG with the highest relevance prob-
ability, i.e.
arg max Pr(QG|R). There are two parameters that influ-
ence Pr(QG|R): (1) the number of triple patterns and (2)

the number of free variables, i.e. variables in a triple pat-
tern that are not bound to any input resource. Given that
∀(si, pi, oi) : Pr(si, pi, oi) ≤ 1, a low number of triple pat-
terns increases the relevance probability of QG. Thus, our
approach aims at generating small query graphs to maxi-
mize the relevance probability. Regarding the second pa-
rameter, more free variables increase the uncertainty and
consequently cause a decrease in Pr(QG|R). As a result of
these considerations, we devise an algorithm that minimizes
the number of both the number of free variables and the
number of triple patterns in QG. Note that is each triple
pattern, the subject si (resp. object oi) should be included
in the domain (resp. range) of the predicate pi or be a vari-
able. Otherwise, we assume the relevance probability of the
given triple pattern to be zero:

(si /∈ domain(pi)) ∨ (oi /∈ range(pi))⇒ Pr(si, pi, oi) = 0.

Forward Chaining. One of the prerequisites of our ap-
proach is the inference of implicit knowledge on the types
of resources as well as domain and range information of the
properties. We define the comprehensive type (CT ) of a re-
source r as the set of all super-classes of explicitly stated
classes of r (i.e., those classes associated with r via the
rdf:type property in the knowledge base). The comprehen-
sive type of a resource can be easily computed using forward
chaining on the rdf:type and rdfs:subClassOf statements
in the knowledge base. We can apply the same approach
to properties to obtain maximal knowledge on their domain
and range. We call the extended domain and range of a
property p comprehensive domain (CDp) and comprehensive
range (CRp). We reduce the task of finding the comprehen-
sive properties (CPr−r′) which link two resources r and r′

to finding properties p such that the comprehensive domain
(resp. comprehensive range) of p intersects with the compre-
hensive type of r resp r′ or vice-versa. We call the set OPr

(resp. IPr) of all properties that can originate from (resp.
end with) a resource r the set of outgoing (resp. incoming)
properties of r.

4.2 Approach
To construct possible query graphs, we generate in a first
step an incomplete query graph IQG(R) = (V ′′, E′′) such
that the vertices V ′′ (resp. edges E′′) are either equal or
subset of the vertices (resp. edges) of the final query graph
V ′′ ⊆ V ′ (resp. E′′ ⊆ E′). In fact, an incomplete query
graph (IQG) contains a set of disjoint sub-graphs, i.e. there



is no vertex or edge in common between the sub-graphs:
IQG = {gi(vi, ei)|∀gi 6= gj : vi ∩ vj = ∅ ∧ ei ∩ ej = ∅}. An
IQG connects a maximal number of the resources detected
beforehand in all possible combinations.

The IQG is the input for the second step of our approach,
which transforms the possibly incomplete query graphs into
a set of final query graphsQG. Note that for the second step,
we use an extension of the minimum spanning tree method
that takes subgraphs (and not sets of nodes) as input and
generates a minimal spanning graph as output. Since in
the second step, the minimum spanning tree does not add
any extra intermediate nodes (except nodes connected by
owl:sameAs links), it eliminates both the need of keeping an
index over the neighborhood of nodes and using exploration
for finding paths between nodes.

Generation of IQGs. After identifying a corresponding set
of resources R = {r1, r2, ...rm} for the input query, we can
construct vertices V ′ and primary edges of the query graph
E′′ ⊆ E′ in an initial step. Each resource r is processed as
follows: (1) If r is an instance, CT of this vertex is equivalent
to CT (r) and the label of this vertex is r. (2) If r is a class,
CT of this vertex just contains r and the label of this vertex
is a new variable.

After the generation of the vertices for all resources that are
instances or classes, the remaining resources (i.e., the prop-
erties) generate an edge and zero (when connecting existing
vertices), one (when connecting an existing with a new ver-
tex) or two vertices. This step uses the sets of incoming and
outgoing properties as computed by the forward chaining.
For each resource r representing a property we proceed as
follows:
• If there is a pair of vertices (v, v′) such that r belongs

to the intersection of the set of outgoing properties of
v and the set of incoming properties of v′ (i.e. r ∈
OPv ∩ IPv′), we generate an edge between v and v′

and label it with r. Note that in case several pairs
(v, v′) satisfy this condition, an IQG is generated for
each pair.
• Else, if there is a vertex v fulfilling the condition r ∈
OPv, then we generate a new vertex u with the CTu

being equal to CRr and an edge labeled with the r
between those vertices (v, u). Also, if the condition
r ∈ IPv for v holds, a new vertex w is generated with
CTw being equal to CDr as well as an edge between v
and w labeled with r.
• If none of the above holds, two vertices are generated,

one with CT equal to CDr and another one with CT
equal to CRr. Also, an edge between these two vertices
with label r is created.

This policy for generating vertices keeps the number of free
variables at a minimum. Note that whenever a property is
connected to a vertex, the associated CT of that vertex is
updated to the intersection of the previous CT and CDp

(CRp respectively) of the property. Also, there may be dif-
ferent options for inserting a property between vertices. In
this case, we construct an individual IQG for each possible
option. If the output of this step generates an IQG that
contains one single graph, we can terminate as there is no
need for further edges and nodes.

Example 1. We look at the query: What is the side

effects of drugs used for Tuberculosis?. Assume the
resource disambiguation process has identified the following
resources:
1. diseasome:possibleDrug (type property)

CD={diseasome:disease}, CR={drugbank:drugs}

2. diseasome:1154 (type instance)

CT={diseasome:disease}

3. sider:sideEffect (type property)

CD={sider:drug}, CR={sider:sideeffect}

After running the IQGs generation, since we have only one
resource with the type class or instance, just one vertice is
generated. Thereafter, since only the domain of possibleDrug
intersects with the CT of the node 1154, we generate: (1) a
new vertex labeled ?v0 with the CT being equal to
CR =possibleDrug, and (2) an edge labeled possibleDrug

from 1154 to ?v0. Since, there is no matched node for the
property sideEffect we generate: (1) a new vertex labeled
?v1 with the CT being equal to sider:drug, (2) a new vertex
labeled ?v2 with the CT being equal to sider:sideeffect,
(3) an edge labeled sideEffect from ?v1 to ?v2. Figure 6
shows the constructed IQG, which contains two disjoint graphs.

1154 ?v0 
possibleDrug 

Graph 1 

?v1 ?v2 
sideEffect 

Graph 2 

Figure 6: IQG for the Example 1.

Connecting Sub-graphs of an IQG. Since the query graph
QG must be a connected graph, we need to connect the dis-
joint sub-graphs in each of the IQGs. The core idea of our
algorithm utilizes the Minimum Spanning Tree (MST) ap-
proach, which builds a tree over a given graph connecting all
the vertices. We use the idea behind Prim’s algorithm [3],
which starts with all vertices and subsequently incremen-
tally includes edges. However, instead of connecting ver-
tices we connect individual disjoint sub-graphs. Hence, we
try to find a minimum set of edges (i.e., properties) to span
a set of disjoint graphs so as to obtain a connected graph.
Therewith, we can generate a query graph that spans all
vertices while keeping the number of vertices and edges at
a minimum. Since a single graph may have many different
spanning trees, there may be several query graphs that cor-
respond to each IQG. We generate all different spanning
graphs because each one may represent a specific interpre-
tation of the user query.

To connect two disjoint graphs we need to obtain edges that
qualify for connecting a vertex in one graph with a suit-
able vertex in the other graph. We obtain these properties
by computing the set of comprehensive properties CP (cf.
Section 4.1) for each combination of two vertices from dif-
ferent sub-graphs. Note that if two vertices are from dif-
ferent datasets, we have to traverse owl:sameAs links to
compute a comprehensive set of properties. This step is
crucial for constructing a federated query over interlinked
data. In order to do so, we first retrieve the direct prop-
erties between two vertices ?v0 ?p ?v1. In case such prop-
erties exist, we add an edge between those two vertices to
IQG. Then, we retrieve the properties connecting two ver-
tices via an owl:sameAs link. To do that, we employ two
graph patterns: (1) ?v0 owl:sameAs ?x. ?x ?p ?v1. (2)



?v0 ?p ?x. ?x owl:sameAs ?v1. The resulting matches to
each of these two patterns are added to the IQG. Finally,
we obtain properties connecting vertices having owl:sameAs

links according to the following pattern:
?v0 owl:sameAs ?x. ?x ?p ?y. ?y owl:sameAs ?v1. Also,
matches for this pattern are added to the IQG.

For each connection discovered between a pair of vertices
(v, v′), a different IQG is constructed by adding the found
edge connecting those vertices to the original IQG. Note
that the IQG resulting from this process contains less un-
connected graphs than the input IQG. The time complexity
in the worst case is O(|v|2) (with |v| being the number of
vertices).

Example 2. To connect two disjoint graphs i.e. Graph
1 and Graph 2 of the IQG shown in Example 1, we need
to obtain edges that qualify for connecting either the ver-
tex 1154 or ?v0 to either vertex ?v1 or ?v2 in Graph 2.
Forward chaining reveals the existence of two owl:sameAs

connections between two vertices i.e. (1) 1154 and ?v2, (2)
?v0 and ?v1. Therefore, we can construct the first query
graph template by adding an edge between 1154 and ?v2 and
the second query graph template by adding an edge between
?v0 and ?v1. The two generated query graph templates are
depicted in Figure 7.

1154 ?v0 
possibleDrug 

Template 1 

?v1 ?v2 
sideEffect 

Template 2 

1154 ?v0 
possibleDrug 

?v1 ?v2 
sideEffect 

Figure 7: Generated query graph templates.

Our approach was implemented as a Java Web application
which is publicly available at http://sina-linkeddata.aksw.
org. The algorithm is knowledge-base-agnostic and can thus
be easily used with other knowledge bases.

5. EVALUATION

Experimental Setup. The goal of our evaluation was to
determine how well (1) our resource disambiguation and (2)
our query construction approaches perform. To the best
of our knowledge, no benchmark for federated queries over
Linked Data has been created so far. Thus, we created a
benchmark of 25 queries on the 3 interlinked datasets Drug-
bank, Sider and Diseasome for the purposes of our evalu-
ation8. The benchmark was created by three independent
SPARQL experts, which provided us with (1) a natural-
language query and (2) the equivalent conjunctive SPARQL
query. We selected these three datasets because they are a
fragment of the well interlinked biomedical fraction of the
Linked Open Data Cloud9 and thus represent an ideal case
for the future structure of Linked Data sources.

8The benchmark queries are available at http://aksw.org/
Projects/lodquery
9For example, 859 owl:sameAs links exists between the 924
instances of drugs in Sider and the 4772 instances of drugs
Drugbank

We measured the performance of our resource disambigua-
tion approach using the Mean Reciprocal Rank (MRR). More-
over, we measured the accuracy of the query construction in
terms of precision and recall. To compute the precision, we
compared the results returned from the query construction
method with the results of the reference query provided by
the benchmark. The query construction is initiated with the
top-1 tuple returned by the disambiguation approach. All
experiments were carried out on a Windows 7 machine with
an Intel Core2 Duo (2.66GHz) processor and 4GB of RAM.
For testing the statistical significance of our results, we used
a Wilcoxon signed ranked test with a significance level of
95%.

Results. The detailed results of our evaluation are shown
in Figure 9. We ran our approach without and with OWL
inferencing during the state space construction. When ran
without inferencing, our approach was able to disambiguate
23 out of 25 (i.e. 92%) of the resources contained in the
queries without mistakes. For Q9 (resp. Q25), the correct
disambiguation was only ranked third (resp. fifth). In the
other two cases (i.e. Q10 and Q12), our approach simply
failed to retrieve the correct disambiguation. This was due
to the path between Doxil and Bextra not being found for
Q10 as well as the mapping from disease to side effect

not being used in Q12. Overall, we achieve an MRR of 86.1%
without inferencing. The MRR was 2% lower (not statis-
tically significant) when including OWL inferencing due to
the best resource disambiguation being ranked at the second
position for three queries that were disambiguated correctly
without inferencing (Q5, Q7 and Q20). This was simply due
to the state space being larger and leading to higher tran-
sition probabilities for the selected resources. With respect
to precision and recall achieved with and without reason-
ing, there were also no statistically significant differences
between the two approaches. The approach without reason-
ing achieved a precision of 0.91 and a recall of 0.88 while
using reasoning led to precision (resp. recall) values of 0.95
(resp. 0.90). Although performance was not (yet) the pri-
mary focus of our work, we want to provide evidence, that
our approach can be used for real-time querying. Overall
the pros and cons of using inferencing are clearly illustrated
in the results of our experiments. On Q12, our approach is
unable to construct a query without reasoning due to the
missing equivalence between the terms disease and side

effect. This equivalence is made available by the inference
engine, thus making the construction of the SPARQL query
possible. On the downside, adding supplementary informa-
tion through inferencing alters the ranking of queries and
can thus lead to poorer recall values as in the case of Q20.

Figure 8 shows the runtime average of disambiguation and
query construction with and without inferencing during the
state space construction for three runs. As it can be ex-
pected, inferencing increases the runtime, especially when
the number of input keywords is high. Despite carrying out
all computations on-the-fly, disambiguation and query con-
struction terminate in reasonable time, especially for smaller
number of keywords. After implementing further perfor-
mance optimizations (e.g. indexing resource distances), we
expect our implementation to terminate in less than 10s also
for up to 5 keywords.

http://sina-linkeddata.aksw.org
http://sina-linkeddata.aksw.org
http://aksw.org/Projects/lodquery
http://aksw.org/Projects/lodquery
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Figure 8: Average of Runtime of disambiguation and
query construction with (+) and without reasoning
in the disambiguation phase in logarithmic scale.

Figure 9: Accuracy results for the benchmark.

6. RELATED WORK
Several information retrieval and question answering
approaches have been developed for the Semantic Web over
the past years. Most of these approaches are adaptations
of document retrieval approaches. For instance, Swoogle [5],
Watson [4], Sindice [25] stick to the document-centric paradigm.
Entity-centric approaches (e.g. Sig.Ma [24], Falcons [2],
SWSE [11]) have recently emerged. However, the basis for
all these services are keyword indexing and retrieval relying
on the matching user keywords and indexed terms. Exam-
ples of question answering systems are PowerAqua [16] and
OntoNL [12]. PowerAqua can automatically combine in-
formation from multiple knowledge bases at runtime. The
input is a natural language query and the output is a list of
relevant entities. PowerAqua lacks a deep linguistic analysis
and can not handle complex queries. Pythia [27] is a ques-
tion answering system that employs deep linguistic analysis.
It can handle linguistically complex questions, but is highly
dependent on a manually created lexicon. Therefore, it fails

with datasets for which the lexicon was not designed. Pythia
was recently used as kernel for TBSL [26], a more flexible
question-answering system that combines Pythia’s linguistic
analysis and the BOA framework [7] for detecting proper-
ties to natural language patterns. Exploring schema from
anchor points bound to input keywords is another approach
discussed in [23]. Querying Linked datasets is addressed
with the work mainly treat both the data and queries as
bags of words [2, 31]. [10] presents a hybrid solution for
querying linked datasets. It run the input query against one
particular dataset regarding the structure of data, then for
candidate answers, it finds and ranks the linked entities from
other datasets . Our approach is a prior work as it queries
all the datasets at hand and then according to the structure
of the data, it makes a federated query. Furthermore, our
approach is independent of any linguistic analysis and does
not fail when the input query is an incomplete sentence.

Segmentation and disambiguation are inherent chal-
lenges of keyword-based search. Keyword queries are usu-
ally short and lead to significant keyword ambiguity [28].
Segmentation has been studied extensively in the natural
language processing (NLP) literature e.g., [18]). NLP tech-
niques for chunking such as part-of-speech tagging or name
entity recognition cannot achieve high performance when
applied to query segmentation. [17] addresses the segmen-
tation problem as well as spelling correction and employs a
dynamic programming algorithm based on a scoring func-
tion for segmentation and cleaning. An unsupervised ap-
proach to query segmentation in Web search is described in
[21]. [33] is a supervised method based on Conditional Ran-
dom Fields (CRF) whose parameters are learned from query
logs. For detecting named entities, [9] uses query log data
and Latent Dirichlet Allocation. In addition to query logs,
various external resources such as Web pages, search result
snippets, Wikipedia titles and a history of the user activi-
ties have been used [19, 22, 1, 20]. Still, the most common
approach is using the context for disambiguation [15, 6, 14].
In this work, resource disambiguation is based on the struc-
ture of the knowledge at hand as well as semantic relations
between the candidate resources mapped to the keywords of
the input query.

7. DISCUSSION AND CONCLUSION
We presented a two-step approach for question answering
from user-supplied queries over federated RDF data. A
main assumption of this work is that some schema infor-
mation is available for the underlying knowledge base and
resources are typed according to the schema. Regarding the
disambiguation, the superiority of our model is related to
the transition probabilities. We achieved a fair balance be-
tween the qualification of states for transiting by reflecting
the popularity and distance in the hub and authority values
and setting a transition probability to the unknown entity
state (depending on the hub value). This resulted in an ac-
curacy of the generated answers of more than 90% for our
test-bed with life-science datasets. This work represents a
first step in a larger research agenda aiming to make the
whole Data Web easily queryable. For scaling the imple-
mentation, a first avenue of improvements is related to the
performance of the system, which can be improved by sev-
eral orders of magnitued thorough including better indexing
and precomputed forward-chaining.
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