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ABSTRACT
In the last years, the amount of semantic data available in
the Web has increased dramatically. The potential of this
vast amount of data is enormous but in most cases it is very
difficult for users to explore and use this data, especially
for those without experience with Semantic Web technolo-
gies. Applying information visualization techniques to the
Semantic Web helps users to easily explore large amounts
of data and interact with them. In this article we devise
a formal Linked Data Visualization Model (LDVM), which
allows to dynamically connect data with visualizations. In
order to achieve such flexibility and a high degree of au-
tomation the LDVM is based on a visualization workflow
incorporating analytical extraction and visual abstraction
steps. We report about our comprehensive implementation
of the LDVM comprising a library of generic visualizations
that enable both users and data analysts to get an overview
on, visualize and explore the Data Web and perform detailed
analyzes on Linked Data.

Categories and Subject Descriptors
H.5.2 [User interfaces]: GUIs, Interaction styles
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Semantic Web, Linked Data, Visualization, Interaction

1. INTRODUCTION
In the last years, the amount of semantic data available on
the Web has increased dramatically, especially thanks to ini-
tiatives like Linked Open Data (LOD). The potential of this
vast amount of data is enormous but in most cases it is very
difficult and cumbersome for users to visualize, explore and
use this data, especially for lay-users [9] without experience
with Semantic Web technologies. Visualizing and interact-
ing with Linked Data is an issue that has been recognized
from the beginning of the Semantic Web (cf. [12]). Ap-

plying information visualization techniques to the Semantic
Web helps users to explore large amounts of data and in-
teract with them. The main objectives of information vi-
sualization are to transform and present data into a visual
representation, in such a way that users can obtain a bet-
ter understanding of the data [6]. Visualizations are useful
for obtaining an overview of the datasets, their main types,
properties and the relationships between them.

Compared to prior information visualization strategies, we
have a unique opportunity on the Data Web. The unified
RDF data model being prevalent on the Data Web enables
us to bind data to visualizations in an unforeseen and dy-
namic way. An information visualization technique requires
certain data structures to be present. When we can de-
rive and generate these data structures automatically from
reused vocabularies or semantic representations, we are able
to realize a largely automatic visualization workflow. Ulti-
mately, we aim to realize an ecosystem of data extractions
and visualizations, which can be bound together in a dy-
namic and unforeseen way. This will enable users to explore
datasets even if the publisher of the data does not provide
any exploration or visualization means. Most existing work
related to visualizing RDF is focused on concrete domains
and concrete datatypes.

The Linked Data Visualization Model (LDVM) we propose
in this paper allows to connect different datasets with dif-
ferent visualizations in a dynamic way. In order to achieve
such flexibility and a high degree of automation the LDVM
is based on a visualization workflow incorporating analyt-
ical extraction and visual abstraction steps. Each of the
visualization workflow steps comprises a number of trans-
formation operators, which can be defined in a declarative
way. As a result, the LDVM balances between flexibility
of visualization options and efficiency of implementation or
configuration. Ultimately we aim to contribute with the
LDVM to the creation of an ecosystem of data publication
and data visualization approaches, which can co-exist and
evolve independently. Our main contributions are in partic-
ular:

1. The adoption of the Data State Reference Model [7]
for the RDF data model through the creation of a for-
mal Linked Data Visualization Model, which allows to
dynamically connect data with visualizations.

2. A comprehensive, scalable implementation of the Linked
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Data Visualization Model comprising a library of generic
data extractions and visualizations that allow to obtain
an overview on, visualize and explore the Data Web in
real-time.

3. An evaluation of our LDVM implementation using a
benchmark consisting of 16 visualization tasks, which
demonstrates that the breath of visualization possibili-
ties can be substantially increased without users being
required to write source code or have extensive domain
knowledge.

The remainder of this article is organized as follows: Sec-
tion 2 discusses related work. Section 3 introduces the Linked
Data Visualization Model. Section 4 describes an implemen-
tation of the model and Section 5 presents its evaluation
with different datasets and visualizations. Finally, Section 6
contains conclusions and future work.

2. RELATED WORK
Related work can be roughly classified into tools supporting
Linked Data visualization and exploration as well as data
visualization models in general.

Linked Data Visualization and Exploration. Exploring
and visualizing Linked Data is a problem that has been ad-
dressed by several projects. Dadzie and Rowe [9] present the
most exhaustive and comprehensive survey to date of exist-
ing approaches to visualising and exploring Linked Data.
They conclude that most of the tools are designed only for
tech-users and do not provide overviews on the data.
Linked Data browsers such as Tabulator [2] or Explorator [1]
allow users to navigate the graph structures and usually dis-
play property-value pairs in tables. They provide a view of
a subject, or a set of subjects and their properties, but not
any additional support getting a broader view of the dataset
being explored. Rhizomer [4] provides an overview of the
datasets and allows to interact with data through Infor-
mation Architecture components such as navigation menus,
breadcrumbs and facets. It also provides visualizations such
as maps and timelines. However, it needs to precompute
some aggregated values. DERI Pipes1 is an engine and
graphical environment for general Web Data transforma-
tions and Mashup. Although it provides an end user GUI for
the user to enter parameter values and browse the results,
it is not intended for lay-users and requires SW expertise.
Graph-based tools such as Fenfire [13], RDF-Gravity2, IsaViz 3

provide node-link visualizations of the datasets and the re-
lationships between them. Although this approach can help
obtaining a better understanding of the data structure, in
some cases graph visualization does not scale well to large
datasets [11]. Sometimes the result is a complex graph
difficult to manage and understand [14]. There are also
JavaScript libraries for visualizing RDF. Sgvizler4 renders
the results of SPARQL queries into HTML visualizations
such as charts, maps, treemaps, etc. However, it requires
SPARQL knowledge in order to create RDF visualizations.
Exhibit5 helps users creating interactive sites with advanced
text searching and filtering functionality. It also provides

1
http://pipes.deri.org/

2
http://semweb.salzburgresearch.at/apps/rdf-gravity

3
http://www.w3.org/2001/11/IsaViz

4
http://code.google.com/p/sgvizler/

5
http://simile-widgets.org/exhibit3/

Tool Overview Detail
View

Auto-
mation

Lay
users

Specific
visualizations

Collabo-
ration

Tabulator - 4 - 4 M, T -

Explorator - 4 4 - - -

DERI Pipes - 4 - - - 4

Fresnel - 4 - - - -

Exhibit - 4 - 4 M, T, C -

Fenfire - 4 - - G -

Sgvizler 4 4 - - C, G, T, M, R -

Rhizomer 4 4 4 4 M, T, C -

LODVis 4 4 4 4 R, M, E, B -

Payola 4 4 - - C, E, O 4

Table 1: Comparison of generic Linked Data visual-
ization approaches. (Specific visualizations: M - Map, T
- Timeline, C - Chart, B - Bubble Chart, O - Circles, R -
Treemap, G - Graph, E - Tree.)

visualizations such as maps, timelines or charts. However,
it requires a domain-expert to configure the different facets.
Moreover, the data must to be stored in a concrete JSON
structure and can not work directly on SPARQL endpoints.
Other tools are restricted to visualizing and browsing con-
crete domains, e.g. LinkedGeoData browser [16] or map4rdf 6

for spatial data or FoaF Explorer for FOAF profiles. Ta-
ble 1 shows a summary of generic Linked Data visualiza-
tion approaches. Most existing tools make it difficult for
non-technical users to explore linked data or are restricted
to concrete domains. Very few of them provide generic vi-
sualizations for RDF data combined with high-automation
and overview visualizations. Consequently, it is still difficult
for end users to obtain an overview of datasets, comprehend
what kind of structures and resources are available and what
properties resources typically have and how they are mostly
related with each other.

Data Visualization. Regarding data visualization, most of
the existing work is focused on categorizing visualization
techniques and systems [10]. For example, [5] and [8] pro-
pose different taxonomies of visualization techniques. How-
ever, most visualization techniques are only compatible with
concrete domains or data types [6]. Chi’s Data State Refer-
ence Model [7] defines the visualization process in a generic
way. It describes a process for transforming raw data into
a concrete visualization by defining four data stages as well
as a set of data transformations and operators. This frame-
work provides a conceptual model that allows to identify all
the components in the visualization process. In Section 3 we
describe how this model serves as a starting point for our
Linked Data Visualization Model.

3. LINKED DATA VISUALIZATION MODEL
In this section we present the Linked Data Visualization
Model (LDVM) by first giving an overview and then for-
malizing the key elements of the model.

3.1 Overview of LDVM
We use the Data State Reference Model (DSRM) proposed
by Chi [7] as a conceptual framework for our Linked Data Vi-
sualization Model (LDVM). DSRM describes the visualiza-
tion process in a generic way. Our LDVM is an adaptation
of this generic model for the specifics of the visualization
of RDF and Linked Data. The main difference is that in
certain parts, LDVM works solely with RDF data model for
increased automation while DSRM is generic in each of its

6
http://oegdev.dia.fi.upm.es/map4rdf/
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Figure 1: High level LDVM overview.

parts and does not constraint the applied data models. We
also extend DSRM with three additional concepts – analyz-
ers, transformers and visualizers. They denote reusable soft-
ware components which can be chained to form an LDVM
instance. Figure 1 shows an overview of the LDVM.

LDVM resembles a pipeline starting with raw source data
(not necessarily RDF) and results with a visualization of the
source data. It is organized into four stages that source data
needs to pass through:

1. Source RDF and non-RDF data: raw data which can
be RDF or adhering to other data models and formats
(e.g. XML, CSV) as well as semi-structured or even
non-structured data (e.g. HTML pages or raw text).

2. Analytical abstraction: extraction and representation
of relevant data in RDF obtained from source data.

3. Visualization abstraction: preparation of an RDF data
structure required by a particular visualization tech-
nique; the data structure is based on generic data types
for visual analysis proposed by Shneiderman [15] (i.e.,
1D, 2D, 3D or multi-dimensional data, temporal data
(as a special case of 1D), tree data, or network data)

4. View: creation of a visualization for the end user.
Data is propagated through the LDVM pipeline from one
stage to another by applying three types of transformation
operators:

1. Data transformation: transforms the raw data repre-
sented in a source data model or format into a repre-
sentation in the RDF data model; the result forms the
base for creating the analytical RDF abstraction.

2. Visualization transformation: transforms the obtained
analytical abstraction into a visualization abstraction.

3. Visual mapping transformation: maps the visualiza-
tion abstraction data structure to a concrete visual
structure on the screen using a particular visualization
technique specified using a set of parameters.

There are also operators within the stages that allow for
in-stage data transformations:

1. Analytical SPARQL operators: transform the output
of the data transformation to the final analytical ab-

straction (e.g. aggregations, enrichment from LOD).
2. Visualization operators: further refine the visualiza-

tion abstraction data structure (e.g., its condensation
if it is too large for transparent visualization).

3. View operators: allow a user to interact with the view
(e.g., rotate, scale, zoom, etc.).

3.2 LDVM Stages
Let us now look at each stage of LDVM in more detail.

Source RDF and non-RDF Data Stage. The first stage con-
siders RDF as well as non-RDF data sources. This is impor-
tant because many data sources on the current Web do not
(yet) provide data represented in the RDF data model. The
data transformation transforms the source data to an RDF
representation which forms a base for creating an analytical
abstraction. In case of RDF data sources, the transforma-
tion can be a simple identity mapping. If the source RDF
data does not have a suitable structure for the following
analysis, the transformation can be a sequence of one or
more SPARQL queries which map the source data to the
required structure. In case of non-RDF data sources, it is a
transformation that converts the source data model to the
RDF data model. For example, it can transform a given
CSV file to an RDF representation. Since data extraction
is a vast research field on its own, we will not consider non-
RDF data sources in this paper and refer the reader to [17]
for a survey on knowledge extraction approaches.

Analytical RDF Abstraction Stage. The output of the second
stage (analytical RDF abstraction) is produced by applying
a sequence of various in-stage analytical SPARQL operators
on the RDF output produced by the data transformation.
We call the sequence analyzer (see Figure 1). Our goal is
to enable users to reuse existing analyzers (possibly created
by other users) for analyzing different datasets. We want
to enable a user to find analyzers which can be applied for
analyzing a given data set and, vice versa, to find datasets
which may be analyzed by a given analyzer. Therefore, it
is necessary to be able to decide whether an analyzer can
be applied on a given dataset, i.e. whether the analyzer
is compatible with the dataset. We formalize the notion of
compatibility later in Section 3.4.

Visualization Abstraction Stage. An analytical abstraction
is not a suitable data structure for visualization. We want
to ensure that a visualization tool is reusable for different
analytical abstractions. Building specific visualizers for par-
ticular analytical abstractions would not enable such reuse.
This is because each visualization tool visualizes particular
generic characteristics captured by the analytical abstrac-
tion. For example, there can be a tool which visualizes
tree structures using the TreeMap technique or another tool
which visualizes the same structures using the SunBurst
technique. And, another tool may visualize 2-dimensional
structures on Google Maps. An analytical abstraction may
contain encoded both tree structure as well as 2-dimensional
structure. All three mentioned tools can be applied to the
analytical abstraction as well as on any other abstraction
which contains the same structures encoded. Therefore, we
need to transform the analytical abstraction into a more
generic data structure based on Generic Visualization Data
Types (GVDTs), listed in Table 2. The GVDTs are inspired



RDF Vocabulary Data Type Visualization Tool

xsd:int, dc:subject,... (count) 1D Histogram

wgs84:lat, geo:point,... 2D Map

visko:3DPointPlot,... 3D 3D Rendering

qb:Observation, scovo:Item,... Multidimensional Chart

xsd:date, ical:dtstart,... Temporal Timeline, Calendar,...

rdfs:subClassOf, skos:narrower,... Tree Treemap, SunBurst,...

foaf:knows,... Network Graph,...

Table 2: Generic visualization data types.

by Shneiderman [15] data types. This structure is then what
is visualized by visualization tools. This transformation is
ensured by the visualization abstraction stage of LDVM. Its
output (visualization abstraction) is produced by a compo-
nent which performs visualization transformation followed
by a set of in-stage visualization operators. We call it visu-
alization transformer. To facilitate associating visualization
tools to analytical abstractions, we provide mappings from
GVDTs to visualization tools but also to RDF vocabularies.
This way, it is possible to associate input analytical RDF
abstractions to GVDTs and then provide or recommend the
more suitable visualization tools to deal with them. The
mappings are summarized in Table 2. For example, an
observation modelled using the the Data Cube Vocabulary
(QB) for dimensional data and part of an analytical abstrac-
tion can be modelled using the generic Multidimensional
datatype and then visualised by any charting tool, which
will be based on this visualization abstraction. A visualiza-
tion transformer can be reused for extracting visualization
abstractions from various analytical abstractions. The only
requirement is that the transformer must be compatible with
the analytical abstraction. This is similar to the compatibil-
ity of analyzers. It is formalized later in Section 3.4.

View Stage. The output of the last stage (view) is produced
by a component called visualizer. A view is a visual repre-
sentation of a visualization abstraction on the screen. A vi-
sualizer performs visual mapping transformation which may
be configured by a user using various parameters (e.g., se-
lection of visualization technique supported by a visualizer,
colors, shapes, proportions, etc.). The user can also manip-
ulate the final view using the view in-stage operators (e.g.
zooming, moving, etc.). A visualizer can be reused for visu-
alizing various visualization abstractions which use GVDTs
supported by the visualizer. In other words, the visualizer
must be compatible with a visualization abstraction. Again,
it is formalized in the same way as for visualization trans-
formers and analyzers in Section 3.4. Let us note that the
introduced analyzer, visualization transformers and visual-
izers can all exploit the benefits of Linked Data. As we have
already mentioned, it is necessary to ensure compatibility
between analyzers and RDF datasets, between visualization
transformers and analytical RDF abstractions, and between
visualizers and visualization RDF abstractions. As we show
later in Section 3.4, the notion of compatibility is based on
ontologies. For example, an analytical RDF abstraction ad-
hering to a given ontology may be processed only by a visual-
ization transformer which supports this ontology. However,
Linked Data enables to exploit, e.g., equivalence mappings
between ontologies. Therefore, a visualization transformer
is able to process all analytical abstractions adhering to the
supported ontology or any other ontology mapped to the
supported one. Linked Data also enables analyzers, visual-
ization transformers and even visualizers to enrich the pro-
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Figure 2: Sample analyzers and visualizers using
LOD.

cessed data with other data from the LOD cloud. For exam-
ple, a visualization transformer may exploit links to the LOD
cloud to get GPS coordinates of the processed geographical
objects.

3.3 Sample LDVM Pipeline Instance
Figure 2 shows several sample instances of LDVM. There
are three analyzers available to users. Two of them can
work with any data source and extract its class hierarchy
or property hierarchy (expressed with rdfs:subClassOf or
rdfs:subPropertyOf properties, respectively). The third
one, public spending analyzer, analyzes the amount of money
spent on public contracts of public authorities grouped by
EU regions at various levels (countries, regions, municipali-
ties etc.). It requires the data to be represented according to
the Public Contracts Ontology7. The output contains EU re-
gions represented as instances of class s:AdministrativeArea
from http://schema.org name space. Regions are orga-
nized into a hierarchy using s:containedIn.

Further, there are three visualization transformers. ClassProp-
2-SKOS Visualization Transformer transforms a class or
property hierarchy to a visualization abstraction adhering to
tree GVDT modeled with SKOS. Each node of the tree is as-
sociated with the name of the class or property, respectively,
and the number of instances. Place-2-SKOS Visualization
Transformer transforms a hierarchy of places expressed us-
ing http://schema.org constructs to tree GVDT modeled
using SKOS as well. Each node of the tree is enriched with
the name of the respective region and the money spent in
the region. The last PCO-2-GeoLocQB Visualization Trans-
former transforms the analytical abstraction containing EU
regions each complemented with the measured money spent
to 2-dimensional GVDT modeled with QB. The dimensions
are GPS longitude and latitude of the capital cities of each
region. The items of the 2-dimensional structure are the
capital cities with their names and the money spent. It is
not necessary that the GPS coordinates are in the analytical
abstraction. The transformer enriches the abstraction with
GPS coordinates from the LOD cloud (DBpedia or other

7http://purl.org/procurement/public-contracts#

http://purl.org/procurement/public-contracts#


source) using links which must be present.

And, finally, there are three different visualizers. Sunburst
Visualizer shows a tree GVDT modeled using SKOS as a
sunburst view. Similarly, TreeMap Visualizer shows a tree
GVDT modeled with SKOS as a TreeMap view. Columns
on GMaps Visualizer shows a 2-dimensional GVDT modeled
with QB with two dimensions representing GPS coordinates
on a Google Map. Each 2-dimensional item with a label and
number is represented as a column placed on the given coor-
dinates. The height of the column depends on the number.
The column is enriched with the label.

Various instances of LDVM pipelines can be created us-
ing these analyzers, visualization transformers, and visual-
izers. A sample instance may combine Class Hierarchy An-
alyzer, ClassProp-2-SKOS Visualization Transformer, and
TreeMap Visualizer and can be applied on DBpedia. The
data flows through the particular LDVM stages are:
• Source Data: raw RDF statements from DBpedia in-

cluding the DBpedia ontology.
• Analytical RDF Abstraction: RDF statements stating

a label, children and number of instances for each class
in the DBpedia ontology.
• Visual RDF Abstraction: RDF statements adhering to

SKOS representing a tree GVDT of DBpedia classes
and their hierarchy.
• View: a TreeMap visualization of the DBpedia class

hierarchy created by the visualizer.
The data is transformed between various stages as follows:
• Data Transformation: since we consider an RDF data

source this transformation is an identity function.
• Visualization Transformation: transforms the class hi-

erarchy to a SKOS representation.
• Visual Mapping Transformation: a function that maps

the SKOS hierarchy to a TreeMap
Finally, the following in-stage operators are applied within
each stage:
• Analytical RDF Abstraction: SPARQL queries which

compute the numbers of instances of each class and
represent the numbers as RDF statements with classes
as subjects (the SPARQL queries form the analyzer).
• Visual Abstraction Operators: if there are more sibling

nodes with 0 assigned, they are condensed to a single
node.
• View: zoom in, zoom out.

3.4 Formalization
As we have discussed in the previous section, the core con-
cept of LDVM are reusable components, i.e. analyzers, vi-
sualization transformers, and visualizers. They are software
components which consume RDF data via their input inter-
faces. An analyzer consumes source RDF data. A visualiza-
tion transformer consumes an analytical RDF abstraction.
A visualizer consumes a visualization RDF abstraction. The
goal of this section is to formally introduce the concept of
compatibility of a component with its input RDF data. This
formalization can then be easily applied on analyzers, visu-
alization transformers, and visualizers. Given the formal-
ization, we are then able to decide whether a given analyzer
can be applied on a given RDF dataset. Similarly, we can
decide whether a visualization transformer can be applied
on a given analytical abstraction, etc.

Our approach is based on the idea to describe the expected
input of a LDVM component with an input signature. The
signature comprises an ontology, which describes the classes
and properties expected in the processed RDF data, and
a set of SPARQL queries which further restrict the data a
component is able to process. The input signature is then
compatible with the RDF data when the ontology of the sig-
nature is semantically compatible with the ontology of the
RDF data and the SPARQL queries of the signature are eval-
uated on the RDF data to a non-empty result. Our approach
is, intentionally, simple. As we show later, we define the se-
mantic compatibility of two ontologies only on the base of
simple equivalence and sub-type-of mappings between their
classes and properties. Our rationale is to provide a simple
and lightweight solution, which allows to resolve the compat-
ibility without complex reasoning. In addition, we allow to
specify more complex rules of compatibility using SPARQL
queries defined by the input signature. While the ontologies
can be used to resolve the static compatibility at design-
time of a LDVM pipeline instance, SPARQL queries can be
evaluated at run-time.

To define the concept of compatibility based on input signa-
tures we first introduce a formal representation of an ontol-
ogy. We do not require the definition to cover all aspects of
ontologies formally. We only need to know the classes and
properties proposed by the ontology and, optionally, RDF
statements which define their equivalence and sub-type-of
mappings to classes and properties of other ontologies.

Definition 1 (Ontology). An ontology O is a triple
(C,P,M) where C is a set of classes, P is a set of predi-
cates, and M is a set of RDF statements (mappings of the
classes and properties to other ontologies). Both classes and
predicates are specified using their unique URIs.

Example 1 (Sample Ontology). Let us demonstrate
the definition on two simple ontologies Opc and Ovcard . Opc

= ({pc:Location}, {geo:long, geo:lat},Mpc). Mpc con-
tains the following statement:
• pc:Location rdfs:subClassOf geo:SpatialThing

As we can see, the ontology contains a class for a geograph-
ical location and two properties representing GPS coordi-
nates. Moreover, the ontology contains an equivalence map-
ping of its class to a class in another ontology. Ovcard =
({vcard:Location}, {vcard:longitude, vcard:latitude},
Mv) where Mv contains following statements:
• vcard:Location

rdfs:equivalentClass geo:SpatialThing

• vcard:longitude

rdfs:equivalentProperty geo:long

• vcard:latitude

rdfs:equivalentProperty geo:lat

This ontology definition allows us to define the concept of
compatibility of two given ontologies. We first need to de-
fine compatibility of two classes and compatibility of two
properties.

Definition 2 (Class Compatibility). Let Os = (Cs,
Ps, Ms) and Ot = (Ct, Pt, Mt) be two ontologies. Let



M = Ms ∪ Mt. Let C = Cs ∪ Ct ∪ {classes used as sub-
jects or objects in statements from M}. A class Ct ∈ Ct is
compatible with a class Cs ∈ Cs iff
• Ct = Cs, OR
• ∃C ∈ C s.t. Ct is compatible with C and

– (Cs, rdfs:equivalentClass, C)) ∈ M,
– (C, rdfs:equivalentClass, Cs)) ∈ M, or
– (Cs, rdfs:subClassOf, C)) ∈ M.

A class Cs is compatible with class Ct when they are the
same class or there exists a chain of equivalence or sub-class-
of mappings between both classes. Therefore, the relation
being compatible with between two classes is reflexive and
transitive but not symmetrical.

Definition 3 (Property Compatibility). Let Os =
(Cs, Ps, Ms) and Ot = (Ct, Pt, Mt) be two ontologies. Let
O denote the union of both. A property Pt ∈ Pt is compat-
ible with a property Ps ∈ Ps iff
• Pt = Ps, OR
• ∃P ∈ P s.t. Pt is compatible with P and

– (Ps, rdfs:equivalentProperty, P ) ∈ M,
– (P, rdfs:equivalentProperty, Ps) ∈ M, or
– (Ps, rdfs:subPropertyOf, P ) ∈ M

Compatibility of properties is defined analogously to com-
patibility of classes. Again, the relationship is a reflexive and
transitive but not symmetrical. Based on the compatibility
of classes and properties we can define the compatibility of
two ontologies. The definition says that an ontology Ot is
compatible with Os iff for each component of Ot (i.e. each
class or property) there is a compatible property in Os.

Definition 4 (Ontology Compatibility). An ontol-
ogy Ot = (Ct, Pt, Mt) is compatible with an ontology Os

= (Cs, Ps, Ms) iff
• (∀Ct ∈ Ct)(∃Cs ∈ Cs)(Ct is compatible with Cs)
• (∀Pt ∈ Pt)(∃Ps ∈ Ps)(Pt is compatible with Ps)

As we can easily prove, again ontology compatibility is re-
flexive and transitive but not symmetrical.

Example 2 (Compatible Ontologies). In our previ-
ous example, class vcard:Location from the ontology Ovcard

is compatible with the class pc:Location from the ontology
Opc. Also, properties vcard:longitude and vcard:latitude

from Ovcard are compatible with geo:long and geo:lat from
Opc, respectively. Therefore, according to the previous defi-
nition, the ontology Ovcard is compatible with Opc.

We further need to formalize a dataset. Basically, a dataset
comprises a set of RDF statements, an ontology which de-
scribes the structure of the RDF statements and, optionally,
their semantics in a form of mappings to other ontologies.

Definition 5 (Dataset). A dataset DS is a pair (D,O)
where D is a set of RDF statements and O is an ontology
with classes and properties used as types in D.

Example 3 (EU Public Contracts Dataset). Note
the datasets depicted in Figure 2. The dataset labeled EU

Public Contracts is formally expressed as a pair DSpc =
(Dpc ,Opc). The ontology Opc has been presented in a sim-
plified way in previous examples. Note, that the original
ontology is more comprehensive and complex. Dpc is a set
of RDF statements (27∗106) which represent the data about
public contracts tendered in EU.

We now define input signatures. Each LDVM component
has an input signature which comprises an ontology and a
set of SPARQL queries. Both are optional. The ontology
describes the basic required structure of the data which may
be processed by the component. The SPARQL queries spec-
ify further restrictions on the data.

Definition 6 (Input Signature and Compatibility).
An input signature S is a pair (O,Q) where O is an ontol-
ogy and Q is a set of SPARQL queries. O specifies the basic
required structure of the input RDF data. Q specify further
more complex restrictions. We say that S is compatible with
a dataset DS = (SDS ,ODS) iff
• O is compatible with ODS

• each Q in Q returns a non-empty result when executed
on SDS

Example 4 (Analyzer Compatibility with a Dataset).
Based on Figure 2 we demonstrate how compatibility of PCO-
2-GeoLocQB Visualization Transformer with the analytical
abstraction created by Public Spending Analyzer can be checked.
The visualization transformer has an input signature Scgmap

= (Ovcard, Qcgmap). The analytical abstraction created by
the analyzer on the base of the EU Public Contracts Dataset
is a dataset DSspend = (Dspend , Opc). To check the com-
patibility we first need to check the compatibility of Ovcard

with Opc (as performed in Example 2). Then we execute
queries in Qcgmap against Dspend . The queries allow for
checking a more detailed compatibility. Our sample query
checks whether there are instances of vcard:Location in the
dataset which have not only the values of vcard:longitude
and vcard:latitude but also other properties which are the
same for all the instances and have integer values, which can
then be used for rendering by a visualizer.

1 SELECT ?property WHERE {
2 ?location a vcard:Location ;
3 vcard:longitude ?longitude ;
4 vcard:latitude ?latitude ;
5 ?property ?value .
6 FILTER (datatype (?value) = xsd:int)
7 { SELECT COUNT(?l) AS ?total WHERE
8 { ?l a vcard:Location } }
9 } GROUP BY ?property ?total

10 HAVING COUNT(? location)=MIN(?total)

If the query returns a non-empty result then the visualiza-
tion transformer is compatible with the analytical abstraction
created by the analyzer and the visualizer can be used to vi-
sualize the output of the analyzer.

Let us note that we could replace the ontology with corre-
sponding SPARQL queries. However, ontologies allow us to
resolve the basic compatibility statically by comparing both
ontologies. SPARQL queries must be evaluated dynami-
cally on the current data of the dataset. Considering only



SPARQL queries to specify the input signature would pre-
vent us from resolving a part of the compatibility statically.
This could be a discomfort for users who built a LDVM
pipeline instance. For them, static compatibility evaluation
is beneficial.

4. IMPLEMENTATION
Based on LDVM, we implemented a comprehensive two-level
prototype. The two levels correspond to two levels of visual-
ization detail from Shneiderman’s visual information seeking
mantra: “overview first, zoom and filter, then details on de-
mand” [15]. Figure 3 shows the general architecture of our
LDVM implementation.

Step 1 corresponds to the LDVM source RDF and non-RDF
data stage, in which a user can enter SPARQL endpoints
and select graphs to visualize. The LDVM implementation
may probe the selected SPARQL endpoints to determine
which analyzers can be offered to the user in the next step.
The probing is based on the formalism of compatibility in-
troduced in Def. 6. In step 2 the user selects an analyzer
from the offered list. (S)he can also customize the analyzer
or create a completely new one. Step 3 performs the data
analysis specified by the analyzer. The analysis is sent to the
server, executed and the LDVM analytical RDF abstraction
is returned. This involves querying of the specified SPARQL
endpoints, which may involve SPARQL query caching mech-
anism for performance optimization, and synthesis of data
gathered from the individual SPARQL endpoints involved.
In Step 4 the user chooses a visualizer to visualize the ob-
tained analytical abstraction. First, the user chooses what
structure encoded in the analytical abstraction should be vi-
sualized. This corresponds to choosing a suitable visualiza-
tion transformer. Then, he chooses a suitable visualizer to
visualize the visualization abstraction created by the trans-
former. Note that it is possible to incorporate the selection
of the visualization transformer into the selection of the vi-
sualizer. In that case, the user chooses only the visualizer
which already contains a suitable visualization transformer.
This is not so flexible and reusable as if they were separated
but it is more comfortable for the user in certain cases. The
optional step 5 involves optional customization of the speci-
fied visualization (e.g. shapes, colors, etc.). In other words,
the user specifies the visual mapping transformation in this
step. Our LDVM implementation allows for ontology-driven
visual mapping transformation. For example, if we are visu-
alizing data about public contracts, we may want to repre-
sent individual contracts (instances of class Contract from
the Public Contracts Ontology) as file icons, etc. Finally,
in step 6 our LDVM implementation runs the chosen visu-
alizer (i.e. creates a view) and presents it to the user. The
user can then execute LDVM view operators, which corre-
spond to zooming, scrolling etc. The arrow from step 6 to
step 4 represents a possible change or customization of the
used visualizer over the same data. The arrow from step 6 to
step 2 represents a change of level of detail. This may be the
zoom-in from Shneiderman’s mantra from the overview level
to the detail on demand level. Also, the change of detail can
be in the opposite direction, i.e. from a detailed view to its
context in the overview. In our case, this means transition
between our two parts of our LDVM implementation.

Figure 4: LDVM implementation LODVisualization
showing the DBpedia class hierarchy as a treemap.

LODVisualization8 implements our architecture on the over-
view level. It allows its users to explore and view the Data
Web through different visualizations on the overview level
of detail. These visualizations allow users to obtain an
overview of RDF datasets and realize what the data is about:
their main types, properties, etc. Payola9 is a general frame-
work for analysis and visualization of RDF data and in con-
trast to LOD visualization focuses on the details on demand
part of Shneiderman’s mantra. It allows its users to specify
detailed analyses of a selected dataset and inspect the re-
sults using various visualizations. We allow users to switch
between the levels of detail as we pass the necessary infor-
mation between the two parts. In the sequel, we describe
the two parts of our prototype in greater detail.

Overview – LODVisualization. LODVisualization allows
to connect different datasets, different data analysis and dif-
ferent visualizations according to the LDVM in a dynamic
way. These visualizations allow users to obtain an overview
of RDF datasets and realize what the data is about: their
main types, properties, etc. In LODVisualization users can
enter or select a SPARQL endpoint and select the graphs
to visualize (first step of LDVM model). Then, the com-
patibility between analyzers and datasets is checked in or-
der to determine which of them are available (second step).
Once the analyzer has been executed, the results are stored
into a visual abstraction, which corresponds to the third
step of the model. Finally, users can visualize the results
using different visualizers depending on their compatibility
(fourth step). Our implementation includes analysis such as
the class hierarchy, property hierarchy, SKOS concepts hi-
erarchy, properties connecting two classes, etc. The results
can be visualized using techniques such as tables, treemaps,
charts, maps, etc. Since being based on the LDVM, LOD-
Visualization is easy to extend with additional analysis and
visualization techniques. Figure 4 shows a treemap with
the DBpedia class hierarchy generated with LODVisualiza-
tion. LODVisualization is developed using Google App En-
gine (GAE), a cloud computing platform for developing and
hosting web applications on Google’s infrastructure. The
frontend is developed using HTML, CSS and JavaScript,
while the backend is implemented in Python. Most visual-

8
http://lodvisualization.appspot.com/

9
http://live.payola.cz

http://lodvisualization.appspot.com/
http://live.payola.cz
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Figure 3: High-level Linked Data Visualization architecture.

izations are created using the JavaScript Infovis Toolkit10

and D3.js [3]. Google Maps and OpenStreetMaps are em-
bedded for geospatial visualizations. Data is transferred be-
tween SPARQL endpoints, as well as server and client us-
ing JSON. LODVisualization is compatible with arbitrary
SPARQL 1.1 compatible endpoints.The server provides a
cache infrastructure implemented using GAE Datastore and
Blobstore. The cache substantially increases performance,
scalability and reliability of Linked Data visualizations by
preventing the execution of the same queries when users aim
to visualize the same data extraction with different visual-
ization techniques. LODVisualization was integrated with
Payola to provide users with easy transition between the
two levels of visualization details. When exploring a dataset,
there is a link provided that transfers all relevant informa-
tion (SPARQL endpoint, graphs, classes, properties) to Pay-
ola and lets users continue analyzing data in Payola.

Details on demand – Payola. The workflow of Payola
consists of two main parts. First, a user creates an analysis.
An analysis starts with SPARQL endpoints selection and
then consists of individual connected analytical SPARQL op-
erators, which have an RDF graph on their input, do a trans-
formation and send the transformed RDF graph to their out-
put. An example can be seen on the left side of Figure 5.
Payola is a framework, so the concrete operator functional-
ity and usability is the responsibility of plugins creators. We
created a library of default operators that represent typical
parts of SPARQL queries. These include selection of re-
sources of a certain type, selection of properties that are
interesting to the user and filters for resources which satisfy
SPARQL filter conditions. However, more complex oper-
ators are possible (e.g. an ontological filter which selects
resources and properties being instances of a given ontol-
ogy). These operators are integrated into SPARQL queries
and executed on the selected SPARQL endpoints. Once an
analysis is defined, it can be executed in a second part cre-
ating the analytical abstraction, which can be then visual-
ized using different visualizers. The analytical abstraction in
Payola is always an RDF graph. Concrete visualizations are
again implemented via visualization plugins. We created
a library of simple visualizer plugins that include various
graph and chart visualizations. An example can be seen on

10
http://thejit.org/

the right side of Figure 5. While the graph visualization
is generically applicable, the chart visualization has certain
requirements on the input RDF graph (i.e. LDVM visual-
ization abstraction). It has to contain resources of a certain
type, each one equipped with a label and property with a
value. When the input graph meets this criteria, i.e. it is
a visualization RDF abstraction compatible with the chart
visualizer, it can be visualized as a chart. The vision for
Payola is that for each problem domain, a domain expert
creates custom LDVM analyzers for that domain and also
custom LDVM visualizers appropriate for that domain. For
the public procurement domain, for example, we created a
visualization customization for the graph visualization for
public contracts where individual contracts are visualized as
green circles with a bobby pin inside. Payola allows users
to download the resulting RDF data in their preferred RDF
serialization. Payola enables users to share their visualiza-
tions and to embed them into external web pages. Payola
is written in Scala and part of its build process is creation
of the client code in HTML, CSS and JavaScript. It is com-
patible with arbitrary SPARQL endpoints.Payola was inte-
grated with LODVisualization to allow an easy transition
from the details on demand visualization level back to the
overview level. Whenever a SPARQL endpoint and a graph
is selected in Payola, a link to LODVisualization enables the
user to explore the selected dataset on the overview level.

5. EVALUATION
Our evaluation consists of three parts. First, we evaluated
our implementation with end users performing several tasks.
Second, we have compared our prototype with the other
approaches described in the Related Work section. Finally,
we evaluated the performance of the critical overview tasks
in LODVisualization.

User evaluation. We asked our test users to perform sev-
eral tasks using our prototype LDVM implementation that
consists of two levels of detail, overview implemented by
LODVisualization and details on demand implemented by
Payola. Expert users, who know the RDF and SPARQL, can
create visualizations on both levels of detail and implement
them in the tools directly. However, our goal was to show
that Linked Data visualization does not have to require such
expertise. This is consistent with our vision where expert

http://thejit.org/


Figure 5: Payola screenshots: On the left analysis specification, on the right graph visualization of the analysis
result.

users create complex configurable visualizations with user-
friendly parameters, which are used as black boxes by lay
users. A lay user should be able to use LDVM implemen-
tations without knowledge of programming and SPARQL.
Therefore, we created some configurable sample analyzers
and visualizers and we let lay users use and customize them
to perform various tasks. We asked 16 users to assess the
difficulty of the tasks on a scale from 0 – not able to solve,
1 – difficult to 5 – easy and to record the time required
to complete each task. The vast majority of the users did
not have any experience with the tools, was not instructed
before the experiment and had no opportunity to interact
with the LDVM team. The following scenarios and tasks
were defined for the user evaluation.

Scenario 1: Generic tasks. First, we asked users to per-
form the following overview tasks with DBpedia using LOD-
Visualization:

1. five most frequently used classes
2. five most frequently used properties
3. five least frequently used classes
4. five least frequently used properties
5. most generic classes in the class hierarchy
6. most generic concepts in the SKOS concept hierarchy
7. five instances of class dbo:Village with the highest

indegree
8. five instances with the highest outdegree

Next, we prepared two more complex scenarios. A general
one using DBpedia and a domain specific one regarding pub-
lic procurement.

Scenario 2: DBpedia. The overview level tasks are:
1. Explore city and country classes in the class hierarchy.
2. Properties connecting cities and countries.
3. Person classes in the class hierarchy and all subclasses.
4. Properties connecting persons and cities.

The details on demand level tasks are:
5. Cities with a population of more than 2 million and

their countries. Use the prepared analysis in Payola

and visualize using Gravity visualizer.
6. Cities in the Czech republic with a population of more

than 50.000 and soccer players born there. A sim-
ilar analysis is available in Payola showing cities in
Germany with population more than one million and
artists born there. Clone this analysis and change it
accordingly. Use the circle visualizer.

Scenario 3: Public procurement. Here, only details on
demand level tasks are performed:

1. Really expensive Czech public contracts (i.e. cost more
than 20 billion CZK). Use the prepared analysis in
Payola. Use the triple table visualizer.

2. Hierarchy of Germany NUTS regions of level 1 and
2. Clone and change a similar analysis in Payola for
Czech NUTS regions. Use the Gravity visualizer.

The results are summarized in Figure 6.Users were not able
to perform tasks 1.2, 1.4 and 1.6. They knew how to perform
these tasks with LODVisualization but the SPARQL queries
to obtain the property hierarchy and the SKOS hierarchy
timed out. These analyses can be executed correctly over
smaller datasets, but they do not scale yet to large datasets
such as DBpedia. The average easiness rating for overview
tasks is 3.67 and 2.82 for details on demand tasks. Complex
tasks such as 2.6 and 3.2 were difficult for users and still
required much time. However, tasks 2.5 and 3.1 were easier
and quicker to solve. Overall, 12 out of the 16 partially quite
complex tasks can be solved in reasonable time (only thee
task require more than 3 minutes).

Comparison with other tools. We compared our LDVM
implementation with other tools described in the Related
Work section. We determined whether it is possible to per-
form the visualization tasks using these tools. Table 3 shows
the results. With Tabulator, Fenfire or Fresnel it is not pos-
sible to perform any of the tasks because they only allow to
display a concrete resource or a set of resources and their
properties. Explorator can perform details on demand tasks
by combining subsets of resources and filtering them. How-
ever, it is not possible to perform any overview task. Some of
the details on demand tasks can be performed with Exhibit
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Figure 6: Average easiness (0-5, higher is better)
and time in minutes (lower is better) including stan-
dard deviations for each task (N = 16)

and Rhizomer through their facet navigation. Rhizomer also
provides class and SKOS concepts overviews that allow to
perform some of the overview tasks. Finally, using Seman-
tic Pipes or Sgvizler it is possible to perform all tasks, but
SPARQL and programming skills as well as extensive do-
main knowledge are necessary. In summary, this evaluation
shows, that our LDVM implementation allows users to solve
the by far largest variety of visualization tasks without pro-
gramming or domain knowledge.

Tool 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.1 2.2 2.3 2.4 2.5 2.6 3.1 3.2

Tabulator - - - - - - - - - - - - - - - -

Explorator - - - - - - - - - 4 - 4 4 4 4 4

D. Pipes 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Fresnel - - - - - - - - - - - - - - - -

Exhibit - - - - - - - - - - - - 4 - 4 4

Fenfire - - - - - - - - - - - - - - - -

Sgvizler 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Rhizomer 4 - - - 4 4 - - 4 4 4 4 - - - 4

LODVis 4 - 4 - 4 - 4 4 4 4 4 4 - - - -

Payola - - - - - - - - - - - - 4 4 4 4

Table 3: Visualization capability comparison with
other tools.

The performance perspective. In order to demonstrate
the feasibility to perform overview tasks in real-time, we
evaluated the performance of our LODVisualization imple-
mentation with different datasets, data extractions and vi-

ID Dataset Data Extraction Visualization 
Configuration 

Execution time (s) 
w/o cache w/ cache 

1 DBpedia Class hierarchy Treemap 3.58 0.87 

2 DBpedia Class hierarchy Crop Circles 3.35 0.76 

3 DBpedia SKOS concept hierarchy Treemap 48.79 16.96 

4 DBpedia Spatial data Google Maps 2.05 0.37 

5 Dbpedia Spatial data OpenStreetMaps 2.03 0.79 

6 Wine Ontology Property hierarchy Indented Tree 1.95 0.57 

7 Wine Ontology Property hierarchy Space Tree 2.45 0.70 

8 LinkedMDB Class hierarchy Treemap 3.28 0.61 

9 WWW 2011  Class hierarchy Crop Circles 2.53 0.75 

10 AGRIS – FAO SKOS concept hierarchy Treemap 28.72 8.54 
 

ID 
Data Transformation - 

SPARQL Query Templates (s) Visual  
Transformation (s) 

Visual Mapping 
Transformation (s) #1 #2 #3 Total 

1 1.4336 1.2741 0.7305 3.4382 0.0190 0.1228 

2 1.2194 1.3423 0.7123 3.2740 0.0140 0.0620 

3 3.5202 5.5424 35.9858 45.0484 0.4588 3.2900 

4 2.0028 - - 2.0028 0.0148 0.0356 

5 1.6008 - - 1.6008 0.0100 0.4266 

6 0.7792 0.4860 0.6712 1.9364 0.0022 0.0130 

7 0.98875 0.6757 0.5650 2.2295 0.0015 0.0372 

8 0.9554 0.7334 1.5442 3.233 0.0086 0.0482 

9 0.8914 0.8924 0.7016 2.4854 0.0102 0.0430 

10 6.2942 6.4924 14.1782 26.9648 0.5428 1.2184 
 
 
 

Table 4: Timings for 10 combinations of datasets,
data extractions and visualization configurations.

sualizations. Table 4 shows a summary of the evaluation re-
sults. Timings for each concrete visualization were averaged
from 10 execution cycles without cache and 10 execution cy-
cles with cache. Despite using some of the largest datasets
available on the Data Web, most of the visualizations can
be generated in real-time (<5s rendering time) and the use
of the cache further reduces the execution time substantially
(<1s rendering time). Creating different visualizations for
the same data extraction takes a similar time. This is due to
the fact that most of the execution time can be attributed
to the data transformation. The visual transformation tim-
ing depends on the size of the results to process. In the
same way, the visual mapping transformation depends on
the number of items to visualize. This number is particu-
larly high in experiments #3 and #10, with a large hierar-
chy of SKOS concepts. However, it is important to note that
the execution times depend mainly on the complexity of the
SPARQL queries as well as on the availability of SPARQL
endpoints or servers.

6. CONCLUSIONS AND FUTURE WORK
We presented the Linked Data Visualization Model (LDVM)
that can be applied to rapidly create visualizations of RDF
data. It allows to connect different datasets, different data
extractions and different visualizations in a dynamic way.
When applying this model, developers and designers can ob-
tain a better understanding of the visualization process with
data stages, transformations and operators. The LDVM of-
fers user guidance on how to create visualizations for RDF
data. We have implemented the model in two complemen-
tary applications which allow to create generic visualizations
for RDF. In our implementations we provide visualizations
that support the overview and details-on-demand tasks pro-
posed by Shneiderman. These visualizations are useful for
obtaining a broad view of the datasets, their main types,
properties and the relationships between them.

The LDVM is the first step on a larger research agenda
aiming at largely automatizing the visualization of semantic
data. In future work we plan to focus on complementing the
Linked Data Visualization Model with an ontology. A visu-
alization ontology can help during the matching process be-
tween data and visualizations, capture the intermediate data
structures that can be generated and choose the visualiza-
tions more suitable for each data structure. Regarding the
implementations of the model, we plan to extend the library
of data analyzers and visualizations. Having more data an-
alyzers and visualizations will facilitate the creation of an
ecosystem of data publication and data visualization ap-
proaches, which can co-exist and evolve independently. We
aim to integrate these components into a general dashboard
for visualizing and interacting with Linked Data through
different visualizations as well as other exploration and au-
thoring components.
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