
Formal Linked Data Visualization Model ?

Josep Maria Brunetti1, Sören Auer2, Roberto García1, Jakub Klímek3, and Martin
Nečaský3

1 GRIHO, Universitat de Lleida
{josepmbrunetti, rgarcia}@diei.udl.cat, http://griho.udl.cat/

2 AKSW, Universität Leipzig
auer@uni-leipzig.de, http://aksw.org/

3 Charles University in Prague
Faculty of Mathematics and Physics

{klimek, necasky}@ksi.mff.cuni.cz, http://xrg.cz/

Abstract. In the last years, the amount of semantic data available in the Web
has increased dramatically. The potential of this vast amount of data is enormous
but in most cases it is very difficult for users to explore and use this data, espe-
cially for those without experience with Semantic Web technologies. Applying
information visualization techniques to the Semantic Web helps users to easily
explore large amounts of data and interact with them. In this article we devise a
formal Linked Data Visualization Model (LDVM), which allows to dynamically
connect data with visualizations. We report about our comprehensive implemen-
tation of the LDVM comprising a library of generic visualizations that enable
both users and data analysts to get an overview on, visualize and explore the Data
Web and perform detailed analyzes on Linked Data.

Keywords: Semantic Web, Linked Data, Visualization, Interaction

1 Introduction

In the last years, the amount of semantic data available on the Web has increased dra-
matically, especially thanks to initiatives like Linked Open Data (LOD). The potential
of this vast amount of data is enormous but in most cases it is very difficult and cumber-
some for users to visualize, explore and use this data, especially for lay-users [8] without
experience with Semantic Web technologies. Visualizing and interacting with Linked
Data is an issue that has been recognized from the beginning of the Semantic Web (cf.
[11]). Applying information visualization techniques to the Semantic Web helps users
to explore large amounts of data and interact with them. The main objectives of infor-
mation visualization are to transform and present data into a visual representation, in
such a way that users can obtain a better understanding of the data [5]. Visualizations

? We would like to thank our colleagues from the GRIHO, XRG and AKSW research groups for
their helpful comments and inspiring discussions during the development of LDVM. This work
was partially supported by a grant from the European Union’s 7th Framework Programme
provided for the project LOD2 (GA no. 257943).

http://griho.udl.cat/
http://aksw.org/
http://xrg.cz/


are useful for obtaining an overview of the datasets, their main types, properties and the
relationships between them.

Compared to prior information visualization strategies, we have a unique opportu-
nity on the Data Web. The unified RDF data model being prevalent on the Data Web
enables us to bind data to visualizations in an unforeseen and dynamic way. An infor-
mation visualization technique requires certain data structures to be present. When we
can derive and generate these data structures automatically from reused vocabularies or
semantic representations, we are able to realize a largely automatic visualization work-
flow. Ultimately, we aim to realize an ecosystem of data extractions and visualizations,
which can be bound together in a dynamic and unforeseen way. This will enable users
to explore datasets even if the publisher of the data does not provide any exploration or
visualization means.

Most existing work related to visualizing RDF is focused on concrete domains and
concrete datatypes. The Linked Data Visualization Model (LDVM) we propose in this
paper allows to connect different datasets with different visualizations in a dynamic
way. LDVM balances between flexibility of visualization options and efficiency of im-
plementation or configuration. Ultimately we aim to contribute with the LDVM to the
creation of an ecosystem of data publication and data visualization approaches, which
can co-exist and evolve independently. Our main contributions are in particular:
1. The adoption of the Data State Reference Model [6] for RDF through the creation

of a formal Linked Data Visualization Model, which allows to dynamically connect
data with visualizations.

2. A comprehensive, scalable implementation of the Linked Data Visualization Model
comprising a library of generic data extractions and visualizations

3. An evaluation of our LDVM implementation using a benchmark consisting of 16
visualization tasks
The remainder of this article is organized as follows: Section 2 discusses related

work. Section 3 introduces the Linked Data Visualization Model. Section 4 describes
an implementation of the model and Section 5 presents its evaluation with different
datasets and visualizations. Finally, Section 6 contains conclusions and future work.

2 Related Work

Exploring and visualizing Linked Data is a problem that has been addressed by several
projects. Dadzie and Rowe [8] present the most exhaustive and comprehensive survey
to date of existing approaches to visualising and exploring Linked Data. They conclude
that most of the tools are designed only for tech-users and do not provide overviews
on the data. Linked Data browsers such as Tabulator [2] or Explorator [1] allow users
to navigate the graph structures and usually display property-value pairs in tables, but
no broader view of the dataset. Rhizomer [3] provides an overview of the datasets and
allows to interact with data through Information Architecture components such as navi-
gation menus, breadcrumbs and facets. It also provides visualizations such as maps and
timelines. DERI Pipes4 is an engine and graphical environment for general Web Data
transformations and Mashup. However, it is not intended for lay-users and requires SW

4
http://pipes.deri.org/

http://pipes.deri.org/


Tool Overview Detail
View

Automation Lay
users

Specific
visualizations

Collaboration

Tabulator - 4 - 4 M, T -
Explorator - 4 4 - - -
DERI Pipes - 4 - - - 4

Fresnel - 4 - - - -
Exhibit - 4 - 4 M, T, C -
Fenfire - 4 - - G -
Sgvizler 4 4 - - C, G, T, M, R -
Rhizomer 4 4 4 4 M, T, C -
LODVis 4 4 4 4 R, M, E, B -
Payola 4 4 - - C, E, O 4

Table 1. Comparison of generic Linked Data visualization approaches. M - Map, T - Timeline, C
- Chart, B - Bubble Chart, O - Circles, R - Treemap, G - Graph, E - Tree.)

expertise. Graph-based tools such as Fenfire [12], RDF-Gravity5, IsaViz6 provide node-
link visualizations of the datasets and the relationships between them. Although this
approach can help obtaining a better understanding of the data structure, in some cases
graph visualization does not scale well to large datasets [10]. There are also JavaScript
libraries for visualizing RDF. Sgvizler7 renders the results of SPARQL queries into
HTML visualizations such as charts, maps, treemaps, etc. It requires SPARQL knowl-
edge in order to create RDF visualizations. Exhibit8 helps users to create interactive
sites with advanced text searching and filtering functionality. Other tools are restricted
to visualizing and browsing concrete domains, e.g. LinkedGeoData browser [15] or
map4rdf 9 for spatial data or FoaF Explorer for FOAF profiles. Table 1 shows a sum-
mary of generic Linked Data visualization approaches. To summarize, most existing
tools make it difficult for non-technical users to explore linked data or are restricted
to concrete domains. Very few of them provide generic visualizations for RDF data
combined with high-automation and overview visualizations.

Regarding data visualization, most of the existing work is focused on categorizing
visualization techniques and systems [9]. [4] and [7] propose various taxonomies of
visualization techniques. However, most visualization techniques are only compatible
with concrete domains or data types [5]. Chi’s Data State Reference Model [6] defines
the visualization process in a generic way. In Section 3 we describe how this model
serves as a starting point for our Linked Data Visualization Model.

3 Linked Data Visualization Model

In this section we present the Linked Data Visualization Model (LDVM), which is
based on a preliminary version [?]. First, we give an overview of the model and then
we formalize its key elements. We also provide examples to explain the principles.

5
http://semweb.salzburgresearch.at/apps/rdf-gravity

6
http://www.w3.org/2001/11/IsaViz

7
http://code.google.com/p/sgvizler/

8
http://simile-widgets.org/exhibit3/

9
http://oegdev.dia.fi.upm.es/map4rdf/

http://semweb.salzburgresearch.at/apps/rdf-gravity
http://www.w3.org/2001/11/IsaViz
http://code.google.com/p/sgvizler/
http://simile-widgets.org/exhibit3/
http://oegdev.dia.fi.upm.es/map4rdf/


Source RDF 
and non-RDF 

Data

Analytical 
RDF

Abstraction

D
a

ta T
ran

sfo
rm

atio
n

Visualization 
RDF 

Abstraction
View

V
isu

alizatio
n

 Tran
sfo

rm
atio

n

V
isu

al M
ap

p
in

g T
ran

sfo
rm

atio
n

Visualization 
Operators

View
Operators

Analytical 
SPARQL 

Operators

Analyzer VisualizerVisualization
Transformer

Fig. 1. High level LDVM overview.

3.1 Overview of LDVM

We use the Data State Reference Model (DSRM) proposed by Chi [6] as a conceptual
framework for our Linked Data Visualization Model (LDVM). DSRM describes the vi-
sualization process in a generic way. Our LDVM is an adaptation of this generic model
for the specifics of the visualization of RDF and Linked Data. The main difference is
that in certain parts, LDVM works solely with RDF data model for increased automa-
tion while DSRM is generic in each of its parts and does not constraint the applied data
models. We also extend DSRM with three additional concepts – analyzers, transform-
ers and visualizers. They denote reusable software components that can be chained to
form an LDVM instance. Figure 1 shows an overview of the LDVM. The names of the
stages, transformations and operators proposed by DSRM have been slightly adapted
to the context of RDF and Linked Data. LDVM resembles a pipeline starting with raw
source data (not necessarily RDF) and results with a visualization of the source data. It
is organized into four stages that source data needs to pass through:
1. Source RDF and non-RDF data: raw data that can be RDF or adhering to other

data models and formats (e.g. XML, CSV) as well as semi-structured or even non-
structured data (e.g. HTML pages or raw text).

2. Analytical abstraction: extraction and representation of relevant data in RDF ob-
tained from source data.

3. Visualization abstraction: preparation of an RDF data structure required by a partic-
ular visualization technique; the data structure is based on generic data types for vi-
sual analysis proposed by Shneiderman [14] (i.e., 1D, 2D, 3D or multi-dimensional
data, temporal data (as a special case of 1D), tree data, or network data)

4. View: creation of a visualization for the end user.
Data is propagated through the LDVM pipeline from one stage to another by apply-

ing three types of transformation operators:
1. Data transformation: transforms the raw data represented in a source data model

or format into a representation in the RDF data model; the result forms the base for
creating the analytical RDF abstraction.

2. Visualization transformation: transforms the obtained analytical abstraction into a
visualization abstraction.

3. Visual mapping transformation: maps the visualization abstraction data structure to
a concrete visual structure on the screen using a particular visualization technique
specified using a set of parameters.



There are operators within the stages that allow for in-stage data transformations:
1. Analytical SPARQL operators: transform the output of the data transformation to

the final analytical abstraction (e.g. aggregations, enrichment from LOD).
2. Visualization operators: further refine the visualization abstraction data structure

(e.g., its condensation if it is too large for transparent visualization).
3. View operators: allow a user to interact with the view (e.g., rotate, scale, zoom,

etc.).

3.2 LDVM Stages

Source RDF and non-RDF Data Stage. The first stage considers RDF as well as non-
RDF data sources as many data sources are currently not RDF. The data transformation
transforms the source data to an RDF representation that forms a base for creating an
analytical abstraction. If the source RDF data does not have a suitable structure for
the following analysis, the transformation can be a sequence of one or more SPARQL
queries that map the source data to the required structure. Since data extraction is a vast
research field on its own, we will not consider non-RDF data sources in this paper and
refer the reader to [16] for a survey on knowledge extraction approaches.

Analytical RDF Abstraction Stage. The output of the second stage (analytical RDF
abstraction) is produced by applying a sequence of various in-stage analytical SPARQL
operators on the RDF output produced by the data transformation. We call the sequence
an analyzer (see Figure 1). Our goal is to enable users to reuse existing analyzers (pos-
sibly created by other users) for analyzing various datasets. We want to enable users
to find analyzers that can be applied for analyzing a given data set and, vice versa, to
find datasets that may be analyzed by a given analyzer automatically. Therefore, it is
necessary to be able to decide whether an analyzer can be applied on a given dataset,
i.e. whether the analyzer is compatible with the dataset. We formalize the notion of
compatibility later in Section 3.4.

Visualization Abstraction Stage. An analytical abstraction is not a suitable data
structure for visualization. We want to ensure that a visualization tool is reusable for
different analytical abstractions. Building specific visualizers for particular analytical
abstractions would not enable such reuse. This is because each visualization tool vi-
sualizes particular generic characteristics captured by the analytical abstraction. For
example, there can be a tool that visualizes tree structures using the TreeMap tech-
nique or another tool that visualizes the same structures using the SunBurst technique.
And, another tool may visualize 2-dimensional structures on Google Maps. An ana-
lytical abstraction may contain encoded both tree structure as well as 2-dimensional
structure. All three mentioned tools can be applied to the analytical abstraction as well
as on any other abstraction which contains the same structures encoded. Therefore, we
need to transform the analytical abstraction into a more generic data structure based on
Generic Visualization Data Types (GVDTs), listed in Table 2. The GVDTs are inspired
by Shneiderman [14] data types. This structure is then what is visualized by visual-
ization tools. This transformation is performed by the visualization abstraction stage of
LDVM. Its output (visualization abstraction) is produced by a component that performs
visualization transformation followed by a set of in-stage visualization operators. We



RDF Vocabulary Data Type Visualization Tool
xsd:int, dc:subject,... (count) 1D Histogram
wgs84:lat, geo:point,... 2D Map
visko:3DPointPlot,... 3D 3D Rendering
qb:Observation, scovo:Item,... Multidimensional Chart
xsd:date, ical:dtstart,... Temporal Timeline, Calendar,...
rdfs:subClassOf, skos:narrower,... Tree Treemap, SunBurst,...
foaf:knows,... Network Graph,...

Table 2. Generic visualization data types.

call it a visualization transformer. To facilitate associating visualization tools to ana-
lytical abstractions, we provide mappings from GVDTs to visualization tools but also
to RDF vocabularies. This way it is possible to associate input analytical RDF abstrac-
tions to GVDTs and then provide or recommend the more suitable visualization tools to
deal with them. The mappings are summarized in Table 2. For example, an observation
modeled using the the Data Cube Vocabulary (QB) for dimensional data and part of an
analytical abstraction can be modeled using the generic Multidimensional datatype and
then visualized by any charting tool, which will be based on this visualization abstrac-
tion. A visualization transformer can be reused for extracting visualization abstractions
from various analytical abstractions. The only requirement is that the transformer must
be compatible with the analytical abstraction.

View Stage. The output of the (view) stage is produced by a component called a vi-
sualizer. A view is a visual representation of a visualization abstraction on the screen.
A visualizer performs visual mapping transformation that may be configured by a user
using various parameters, e.g. visualization technique, colors and shapes. The user can
also manipulate the final view using the view in-stage operators such as zoom and move.
A visualizer can be reused for visualizing various visualization abstractions that use
GVDTs supported by the visualizer. In other words, the visualizer must be compat-
ible with a visualization abstraction. It is necessary to ensure compatibility between
analyzers and RDF datasets, between visualization transformers and analytical RDF
abstractions, and between visualizers and visualization RDF abstractions. As we show
later in Section 3.4, the notion of compatibility is based on ontologies. For example, an
analytical RDF abstraction adhering to a given ontology may be processed only by a
visualization transformer that supports this ontology. In addition, a visualization trans-
former is also able to process all analytical abstractions adhering to any other ontology
mapped to the supported one thanks to the Linked Data principles, which also enable
analyzers, visualization transformers and even visualizers to enrich the processed data
with other data from the LOD cloud.

3.3 Sample LDVM Pipeline Instance

Figure 2 shows several sample instances of LDVM. There are 3 analyzers available to
users. 2 of them can work with any data source and extract its class hierarchy or property
hierarchy (expressed with rdfs:subClassOf or rdfs:subPropertyOf proper-
ties, respectively). The third one, public spending analyzer, analyzes the amount of
money spent on public contracts of public authorities grouped by EU regions at vari-
ous levels (countries, regions, municipalities etc.). It requires the data to be represented



Class Hierarchy 
Analyzer

Property 
Hierarchy Analyzer

Public Spending 
Analyzer

DBpedia

EU Public 
Contracts

TreeMap 
Visualizer

Columns on 
GMaps Visualizer

ClassProp-2-SKOS 
Vis. Transformer

PCO-2-GeoLocQB 
Vis. Transformer

Sunburst 
Visualizer

Place-2-SKOS Vis. 
Transformer

Fig. 2. Sample analyzers and visualizers using LOD.

according to the Public Contracts Ontology10. The output contains EU regions repre-
sented as instances s:AdministrativeArea from http://schema.org name
space. Regions are organized into a hierarchy using s:containedIn.

Further, there are three visualization transformers. ClassProp-2-SKOS Visualization
Transformer transforms a class or property hierarchy to a visualization abstraction ad-
hering to tree GVDT modeled with SKOS. Each node of the tree is associated with
the name of the class or property, respectively, and the number of instances. Place-
2-SKOS Visualization Transformer transforms a hierarchy of places expressed using
http://schema.org constructs to tree GVDT modeled using SKOS as well. Each
node of the tree is enriched with the name of the respective region and the money
spent in the region. The last PCO-2-GeoLocQB Visualization Transformer transforms
the analytical abstraction containing EU regions each complemented with the measured
money spent to 2-dimensional GVDT modeled with QB. The dimensions are GPS lon-
gitude and latitude of the capital cities of each region. The items of the 2-dimensional
structure are the capital cities with their names and the money spent. It is not necessary
that the GPS coordinates are in the analytical abstraction. The transformer enriches the
abstraction with GPS coordinates from the LOD cloud (DBpedia or other source) using
links that must be present.

Finally, there are three different visualizers. Sunburst Visualizer shows a tree GVDT
modeled using SKOS as a sunburst view. Similarly, TreeMap Visualizer shows a tree
GVDT modeled with SKOS as a TreeMap view. Columns on GMaps Visualizer shows
a 2-dimensional GVDT modeled with QB with two dimensions representing GPS co-
ordinates on a Google Map. Each 2-dimensional item with a label and number is repre-

10 http://purl.org/procurement/public-contracts#

http://purl.org/procurement/public-contracts#


sented as a column placed on the given coordinates. The height of the column depends
on the number. The column is enriched with the label.

Various instances of LDVM pipelines can be created using these analyzers, visual-
ization transformers, and visualizers. A sample instance may combine Class Hierarchy
Analyzer, ClassProp-2-SKOS Visualization Transformer, and TreeMap Visualizer and
can be applied on DBpedia. The data flows through the particular LDVM stages are:

– Source Data: raw RDF statements from DBpedia including the DBpedia ontology.
– Analytical RDF Abstraction: RDF statements stating a label, children and number

of instances for each class in the DBpedia ontology.
– Visual RDF Abstraction: RDF statements adhering to SKOS representing a tree

GVDT of DBpedia classes and their hierarchy.
– View: a TreeMap visualization of the DBpedia class hierarchy created by the visu-

alizer.
The data is transformed between various stages as follows. The Data Transforma-

tion is an identity function since we use RDF data. The Visualization Transformation
transforms the class hierarchy to a SKOS representation. The Visual Mapping Transfor-
mation is a function that maps the SKOS hierarchy to a TreeMap The in-stage operators
are applied within each stage:

– Analytical RDF Abstraction: SPARQL queries that compute the numbers of in-
stances of each class and represent the numbers as RDF statements with classes as
subjects (the SPARQL queries form the analyzer).

– Visual Abstraction Operators: if there are more sibling nodes with 0 assigned, they
are condensed to a single node.

– View: zoom in, zoom out.

3.4 Formalization

The core concept of LDVM are reusable components, i.e. analyzers, visualization trans-
formers, and visualizers. They are software components that consume RDF data via
their input interfaces. An analyzer consumes source RDF data. A visualization trans-
former consumes an analytical RDF abstraction. A visualizer consumes a visualization
RDF abstraction. The goal is to formally introduce the concept of compatibility of a
component with its input RDF data. This formalization can then be easily applied on
analyzers, visualization transformers and visualizers. Given the formalization, we are
then able to decide whether a given analyzer can be applied on a given RDF dataset.
Similarly, we can decide whether a visualization transformer can be applied on a given
analytical abstraction, etc. Our approach is based on the idea to describe the expected
input of a LDVM component with an input signature. The signature comprises an on-
tology, which describes the classes and properties expected in the processed RDF data,
and a set of SPARQL queries that further restrict the data a component is able to pro-
cess. The input signature is then compatible with the RDF data when the ontology of
the signature is semantically compatible with the ontology of the RDF data and the
SPARQL queries of the signature are evaluated on the RDF data to a non-empty result.
As we show later, we define the semantic compatibility of two ontologies only on the
base of simple equivalence and sub-type-of mappings between their classes and prop-
erties. Our rationale is to provide a simple and lightweight solution, which allows to



resolve the compatibility without complex reasoning. In addition, we allow to specify
more complex rules of compatibility using SPARQL queries defined by the input signa-
ture. While the ontologies can be used to resolve the static compatibility at design-time
of a LDVM pipeline instance, SPARQL queries can be evaluated at run-time. To de-
fine the concept of compatibility based on input signatures we first introduce a formal
simplified representation of an ontology.

Definition 1 (Ontology). An ontology O is a triple (C,P,M) where C is a set of
classes, P is a set of predicates, andM is a set of RDF statements (mappings of the
classes and properties to other ontologies). Both classes and predicates are specified
using their unique URIs.

Example 1 (Sample Ontology). Let us demonstrate the definition on two simple ontolo-
gies Opc and Ovcard . Opc = ({pc:Location}, {geo:long,geo:lat},Mpc).
Mpc contains the following statement:

– pc:Location rdfs:subClassOf geo:SpatialThing
As we can see, the ontology contains a class for a geographical location and two prop-
erties representing GPS coordinates. Moreover, the ontology contains an equivalence
mapping of its class to a class in another ontology. Ovcard = ({vcard:Location},
{vcard:longitude, vcard:latitude}, Mv) where Mv contains following
statements:

– vcard:Location rdfs:equivalentClass geo:SpatialThing
– vcard:longitude rdfs:equivalentProperty geo:long
– vcard:latitude rdfs:equivalentProperty geo:lat

This ontology definition allows us to define the concept of compatibility of two
given ontologies. We first need to define compatibility of two classes and compatibility
of two properties.

Definition 2 (Class Compatibility). Let Os = (Cs, Ps,Ms) and Ot = (Ct, Pt,Mt)
be two ontologies. LetM=Ms ∪Mt. Let C = Cs ∪ Ct ∪ {classes used as subjects or
objects in statements fromM}. A class Ct ∈ Ct is compatible with a class Cs ∈ Cs iff

– Ct = Cs, OR
– ∃C ∈ C s.t. Ct is compatible with C and
• (Cs,rdfs:equivalentClass, C)) ∈M,
• (C,rdfs:equivalentClass, Cs)) ∈M, or
• (Cs,rdfs:subClassOf, C)) ∈M.

A class Cs is compatible with class Ct when they are the same class or there exists
a chain of equivalence or sub-class-of mappings between both classes. Therefore, the
relation being compatible with between two classes is reflexive and transitive but not
symmetrical.

Definition 3 (Property Compatibility). Let Os = (Cs, Ps, Ms) and Ot = (Ct, Pt,
Mt) be two ontologies. Let O denote the union of both. A property Pt ∈ Pt is compat-
ible with a property Ps ∈ Ps iff

– Pt = Ps, OR



– ∃P ∈ P s.t. Pt is compatible with P and
• (Ps,rdfs:equivalentProperty, P ) ∈M,
• (P,rdfs:equivalentProperty, Ps) ∈M, or
• (Ps,rdfs:subPropertyOf, P ) ∈M

Compatibility of properties is similar to the compatibility of classes. Again, the re-
lationship is a reflexive and transitive but not symmetrical. Based on the compatibility
of classes and properties we can define the compatibility of two ontologies. The defini-
tion says that an ontology Ot is compatible with Os iff for each component of Ot (i.e.
each class or property) there is a compatible property in Os.

Definition 4 (Ontology Compatibility). An ontologyOt = (Ct,Pt,Mt) is compatible
with an ontology Os = (Cs, Ps,Ms) iff

– (∀Ct ∈ Ct)(∃Cs ∈ Cs)(Ct is compatible with Cs)
– (∀Pt ∈ Pt)(∃Ps ∈ Ps)(Pt is compatible with Ps)

As we can easily prove, again ontology compatibility is reflexive and transitive but
not symmetrical.

Example 2 (Compatible Ontologies). In our previous example, vcard:Location
from the ontology Ovcard is compatible with the class pc:Location from the ontol-
ogyOpc . Also, properties vcard:longitude and vcard:latitude fromOvcard

are compatible with geo:long and geo:lat from Opc , respectively. Therefore, ac-
cording to the previous definition, the ontology Ovcard is compatible with Opc .

We further need to formalize a dataset. Basically, a dataset comprises a set of RDF
statements, an ontology that describes the structure of the RDF statements and, option-
ally, their semantics in a form of mappings to other ontologies.

Definition 5 (Dataset). A dataset DS is a pair (D,O) where D is a set of RDF state-
ments and O is an ontology with classes and properties used as types in D.

We now define input signatures. Each LDVM component has an input signature
that comprises an ontology and a set of SPARQL queries. Both are optional. The on-
tology describes the basic required structure of the data that may be processed by the
component. The SPARQL queries specify further restrictions on the data.

Definition 6 (Input Signature and Compatibility). An input signature S is a pair
(O,Q) whereO is an ontology andQ is a set of SPARQL queries.O specifies the basic
required structure of the input RDF data. Q specify further more complex restrictions.
We say that S is compatible with a dataset DS = (SDS ,ODS) iff

– O is compatible with ODS

– each Q in Q returns a non-empty result when executed on SDS

Example 3 (Analyzer Compatibility with a Dataset). Based on Figure 2 we demonstrate
how compatibility of PCO-2-GeoLocQB Visualization Transformer with the analyti-
cal abstraction created by Public Spending Analyzer can be checked. The visualization
transformer has an input signature Scgmap = (Ovcard,Qcgmap). The analytical abstrac-
tion created by the analyzer on the base of the EU Public Contracts Dataset is a dataset



BACKEND

FRONTEND

Analytical Operators

SPARQL 
Endpoints 

and Named 
Graphs 

Selection

Analytical 
Operators 

Specification

Visualization 
Plugin 

Selection

Ontology-
based

Visualization 
Customization

Results

1

Server

SPARQL Endpoint 1 SPARQL Endpoint N

SPARQL query RDF SPARQL query RDF

Analysis
Execution

Cache

Dataset probing

SPARQL Query
RDF

LOD CLOUD

2 3 41 5 6

ResultsResults

Fig. 3. High-level Linked Data Visualization architecture.

DSspend = (Dspend , Opc). To check the compatibility we first need to check the com-
patibility of Ovcard with Opc (as performed in Example 2). Then we execute queries
in Qcgmap against Dspend . Our sample query checks whether there are instances of
vcard:Location in the dataset that have the values of vcard:longitude and
vcard:latitude and also other properties that are the same for all the instances
and have integer values, which can then be used for rendering by a visualizer. If the
query returns a non-empty result, the visualization transformer is compatible with the
analytical abstraction and and the visualizer can be used.

Let us note that we could replace the ontology with corresponding SPARQL queries.
However, this would prevent us from resolving a part of the compatibility statically,
which could be a discomfort for users who built a LDVM pipeline instance.

4 Implementation

Based on LDVM, we implemented a comprehensive two-level prototype. The two levels
correspond to two levels of visualization detail from Shneiderman’s visual information
seeking mantra: “overview first, zoom and filter, then details on demand” [14]. Figure 3
shows the general architecture of our LDVM implementation.

Step 1 corresponds to the LDVM source RDF and non-RDF data stage, in which
a user can enter SPARQL endpoints and select graphs to visualize. The LDVM im-
plementation may probe the selected SPARQL endpoints based on the formalism of
compatibility introduced in Definition 6 to determine which analyzers can be offered
to the user in the next step. In step 2 the user selects an analyzer from the offered
list. (S)he can also customize the analyzer or create a completely new one. Step 3 per-
forms the data analysis specified by the analyzer. The analysis is sent to the server,
executed and the LDVM analytical RDF abstraction is returned. This involves query-
ing of the specified SPARQL endpoints, which may involve SPARQL query caching
mechanism for performance optimization, and synthesis of data gathered from the indi-
vidual SPARQL endpoints involved. In Step 4 the user chooses a visualizer to visualize
the obtained analytical abstraction. First, the user chooses what structure encoded in
the analytical abstraction should be visualized. This corresponds to choosing a suitable
visualization transformer. Then, he chooses a suitable visualizer to visualize the visu-
alization abstraction created by the transformer. The optional step 5 involves optional
customization of the specified visualization (e.g. shapes, colors, etc.). In other words,



Fig. 4. Implementation screenshots: On the left Payola graph visualization an analysis result, on
the right LODVisualization TreeMap of DBPedia class hierarchy

the user specifies the visual mapping transformation in this step. Finally, in step 6 our
LDVM implementation runs the chosen visualizer (i.e. creates a view) and presents it
to the user. The user can then execute LDVM view operators, which correspond to
zooming, scrolling etc. The arrow from step 6 to step 4 represents a possible change or
customization of the used visualizer over the same data. The arrow from step 6 to step
2 represents a change of level of detail. This may be the zoom-in from Shneiderman’s
mantra from the overview level to the detail on demand level. Also, the change of detail
can be in the opposite direction, i.e. from a detailed view to its context in the overview.
In our case, this means transition between our two parts of our LDVM implementation.
Let us now introduce our implementations on the respective levels.

Overview – LODVisualization11 allows to connect different datasets, different data
analysis and different visualizations according to the LDVM in a dynamic way. These
visualizations allow users to obtain an overview of RDF datasets and realize what the
data is about: their main types, properties, etc. In LODVisualization users can enter
or select a SPARQL endpoint and select the graphs to visualize (first step of LDVM
model). Then, the compatibility between analyzers and datasets is checked in order to
determine which of them are available (second step). Once the analyzer has been exe-
cuted, the results are stored into a visual abstraction, which corresponds to the third step
of the model. Finally, users can visualize the results using different visualizers depend-
ing on their compatibility (fourth step). Our implementation includes analysis such as
the class hierarchy, property hierarchy, SKOS concepts hierarchy, properties connecting
two classes, etc. The results can be visualized using techniques such as tables, treemaps,
charts, maps, etc. Since being based on the LDVM, LODVisualization is easy to extend
with additional analysis and visualization techniques. Figure 4 shows a treemap with
the DBpedia class hierarchy generated with LODVisualization. LODVisualization was
integrated with Payola to provide users with easy transition between the two levels of
visualization details. When exploring a dataset, there is a link provided that transfers all
relevant information (SPARQL endpoint, graphs, classes, properties) to Payola and lets
users continue analyzing data in Payola.

Details on demand – Payola12 [13] is a general framework for analysis and visu-
alization of RDF data and in contrast to LOD visualization focuses on the details on

11
http://lodvisualization.appspot.com/

12
http://live.payola.cz

http://lodvisualization.appspot.com/
http://live.payola.cz


demand part of Shneiderman’s mantra. Its workflow consists of two main parts. First, a
user creates an analysis. An analysis starts with SPARQL endpoints selection and then
consists of individual connected analytical SPARQL operators, which have an RDF
graph on their input, do a transformation and send the transformed RDF graph to their
output. Payola is a framework, so the concrete operator functionality and usability is
the responsibility of plugins creators. We created a library of default operators that rep-
resent typical parts of SPARQL queries. These operators are integrated into SPARQL
queries and executed on the selected SPARQL endpoints. Once an analysis is defined,
it can be executed in a second part creating the analytical abstraction, which can be
then visualized using different visualizers. The analytical abstraction in Payola is al-
ways an RDF graph. Concrete visualizations are again implemented via visualization
plugins. An example can be seen on the left side of Figure 4. While the graph visual-
ization is generically applicable, the chart visualization has certain requirements on the
input RDF graph (i.e. LDVM visualization abstraction). It has to contain resources of a
certain type, each one equipped with a label and property with a value. When the input
graph meets this criteria, i.e. it is a visualization RDF abstraction compatible with the
chart visualizer, it can be visualized as a chart. The vision for Payola is that for each
problem domain, a domain expert creates custom LDVM analyzers for that domain and
also custom LDVM visualizers appropriate for that domain. Payola was integrated with
LODVisualization to allow an easy transition from the details on demand visualization
level back to the overview level. Whenever a SPARQL endpoint and a graph is selected
in Payola, a link to LODVisualization enables the user to explore the selected dataset
on the overview level.

5 Evaluation

Our evaluation consists of two parts. First, we evaluated our implementation with end
users performing several tasks. Second, we have compared our prototypes with the other
approaches described in the Related Work section.

User evaluation We asked our test users to perform tasks using our prototype LDVM
implementation – overview implemented by LODVisualization and details on demand
implemented by Payola. Expert users, who know the RDF and SPARQL, can create
visualizations on both levels of detail and implement them in the tools directly. How-
ever, our goal was to show that Linked Data visualization does not have to require such
expertise. This is consistent with our vision where expert users create complex config-
urable visualizations with user-friendly parameters, which are used as black boxes by
lay users. Therefore, we created some configurable sample analyzers and visualizers
and we let lay users use and customize them to perform various tasks. We asked 16
users to assess the difficulty of the tasks on a scale from 0 – not able to solve, 1 – dif-
ficult to 5 – easy and to record the time required to complete each task. The following
scenarios and tasks were defined for the user evaluation.
Scenario 1: Generic tasks consists of 8 tasks than can be done using DBPedia and
LODVisualization: (1) five most frequently used classes, (2) five most frequently used
properties, (3) five least frequently used classes, (4) five least frequently used properties
(5) most generic classes in the class hierarchy, (6) most generic concepts in the SKOS



0 1 2 3 4 5 6

T1.1.

T1.2.

T1.3.

T1.4.

T1.5.

T1.6.

T1.7.

T1.8.

T2.1.

T2.2.

T2.3.

T2.4.

T2.5.

T2.6.

T3.1.

T3.2.

Average time Average easiness

Fig. 5. Average easiness (0-5, higher is better) and time in minutes (lower is better) including
standard deviations for each task (N = 16)

concept hierarchy, (7) five instances of class dbo:Village with the highest indegree,
(8) five instances with the highest outdegree. Next, we prepared a general scenario us-
ing DBpedia and a domain specific one regarding public procurement.
Scenario 2: DBpedia The overview level tasks are: (1) Explore city and country classes
in the class hierarchy. (2) Properties connecting cities and countries. (3) Person classes
in the class hierarchy and all subclasses. (4) Properties connecting persons and cities.
The details on demand level tasks are: (5) Cities with a population of more than 2 mil-
lion and their countries. Use the prepared analysis in Payola and visualize using Gravity
visualizer. (6) Cities in the Czech republic with a population of more than 50.000 and
soccer players born there. A similar analysis is available in Payola showing cities in
Germany with population more than one million and artists born there. Clone this anal-
ysis and change it accordingly. Use the circle visualizer.
Scenario 3: Public procurement Here, only details on demand level tasks are performed:
(1) Really expensive Czech public contracts (i.e. cost more than 20 billion CZK). Use
the prepared analysis in Payola. Use the triple table visualizer. (2) Hierarchy of Ger-
many NUTS regions of level 1 and 2. Clone and change a similar analysis in Payola for
Czech NUTS regions. Use the Gravity visualizer.

The results are summarized in Figure 5.Users were not able to perform tasks 1.2,
1.4 and 1.6. They knew how to perform these tasks with LODVisualization but the
SPARQL queries to obtain the property hierarchy and the SKOS hierarchy timed out.
These analyses can be executed correctly over smaller datasets, but they do not scale yet



Tool 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.1 2.2 2.3 2.4 2.5 2.6 3.1 3.2
Tabulator - - - - - - - - - - - - - - - -
Explorator - - - - - - - - - 4 - 4 4 4 4 4

D. Pipes 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Fresnel - - - - - - - - - - - - - - - -
Exhibit - - - - - - - - - - - - 4 - 4 4

Fenfire - - - - - - - - - - - - - - - -
Sgvizler 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Rhizomer 4 - - - 4 4 - - 4 4 4 4 - - - 4

LODVis 4 - 4 - 4 - 4 4 4 4 4 4 - - - -
Payola - - - - - - - - - - - - 4 4 4 4

Table 3. Visualization capability comparison with other tools.

to large datasets such as DBpedia. It is important to note that the execution times depend
on the dataset size as well as on the availability of SPARQL endpoints or servers, and
therefore they can produce a timeout. The average easiness rating for overview tasks
is 3.67 and 2.82 for details on demand tasks. Complex tasks such as 2.6 and 3.2 were
difficult for users and still required much time. However, tasks 2.5 and 3.1 were easier
and quicker to solve. Overall, 12 out of the 16 partially quite complex tasks can be
solved in reasonable time (only thee task require more than 3 minutes).

Comparison with other tools With Tabulator, Fenfire or Fresnel it is not possible
to perform any of the tasks because they only allow to display a concrete resource or a
set of resources and their properties. Explorator can perform details on demand tasks by
combining subsets of resources and filtering them. However, it is not possible to perform
any overview task. Some of the details on demand tasks can be performed with Exhibit
and Rhizomer through their facet navigation. Rhizomer also provides class and SKOS
concepts overviews that allow to perform some of the overview tasks. Finally, using
Semantic Pipes or Sgvizler it is possible to perform all tasks, but SPARQL and pro-
gramming skills as well as extensive domain knowledge are necessary. Table 3 shows
the comparison with other tools. In summary, this evaluation shows, that our LDVM
implementation allows users to solve the by far largest variety of visualization tasks
without programming or domain knowledge.

6 Conclusions and Future Work

We presented the Linked Data Visualization Model (LDVM) that can be applied to
rapidly create visualizations of RDF data. It allows to connect different datasets, data
extractions and visualizations in a dynamic way. We have implemented the model in
two complementary applications which allow to create generic visualizations for RDF.
In our implementations we provide visualizations that support the overview and details-
on-demand tasks proposed by Shneiderman.

The LDVM is the first step on a larger research agenda aiming at automatizing the
visualization of semantic data. In future work we focus on complementing the Linked
Data Visualization Model with an ontology that can help during the matching process



between data and visualizations, capture the intermediate data structures that can be
generated and choose the visualizations more suitable for each data structure. Regard-
ing the implementations of the model, we plan to improve the analyizer component to
make it possible to execute complex SPARQL queries without timing out, e.g. using a
cache memory or decomposing the query into simpler sub-queries. We also focus on
extending the library of data analyzers and visualizations. We aim to integrate these
components into a general dashboard for visualizing and interacting with Linked Data
through different visualizations as well as other exploration and authoring components.

References

1. S. Araujo, D. Shwabe, and S. Barbosa. Experimenting with explorator: a direct manipulation
generic rdf browser and querying tool. In WS on Visual Interfaces to the Social and the
Semantic Web (VISSW2009), 2009.

2. T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach, A. Lerer, and
D. Sheets. Tabulator: Exploring and analyzing linked data on the semantic web. In 3rd Int.
Semantic Web User Interaction WS, 2006.

3. J. Brunetti, R. Gil, and R. Garcia. Facets and Pivoting for Flexible and Usable Linked Data
Exploration. In Interacting with Linked Data Workshop, ILD’12, Crete, Greece, May 2012.

4. J. M. Brunetti, S. Auer, and R. Garcia. The linked data visualization model. In International
Semantic Web Conference (Posters & Demos), 2012.

5. S. K. Card and J. Mackinlay. The structure of the information visualization design space. In
IEEE Symp. on Information Visualization, INFOVIS ’97, 1997.

6. S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in Information Visualization:
Using Vision to Think. Academic Press, London, 1999.

7. E. H. Chi. A Taxonomy of Visualization Techniques Using the Data State Reference Model.
In IEEE Symposium on Information Vizualization 2000, INFOVIS ’00, Washington, DC,
USA, 2000. IEEE.

8. E. H. H. Chi, P. Barry, J. Riedl, and J. Konstan. A spreadsheet approach to information
visualization. In IEEE Symposium on Information Visualization ’97, 1997.

9. A.-S. Dadzie and M. Rowe. Approaches to visualising Linked Data. Semantic Web, 2(2):89–
124, 2011.

10. M. C. F. de Oliveira and H. Levkowitz. From visual data exploration to visual data mining:
A survey. IEEE Transactions on Visualization and Computer Graphics, 9:378–394, 2003.

11. F. Frasincar, R. Telea, and G.-J. Houben. Adapting graph visualization techniques for the
visualization of rdf data. In Visualizing the Semantic Web, 2006.

12. V. Geroimenko and C. Chen, editors. Visualizing the Semantic Web. Springer, 2002.
13. T. Hastrup, R. Cyganiak, and U. Bojars. Browsing linked data with fenfire, 2008.
14. J. Klímek, J. Helmich, and M. Nečaský. Payola: Collaborative Linked Data Analysis and Vi-

sualization Framework. In 10th Extended Semantic Web Conference (ESWC 2013). Springer,
2013.

15. B. Shneiderman. The eyes have it. In IEEE Symposium on Visual Languages, 1996.
16. C. Stadler, J. Lehmann, K. Höffner, and S. Auer. LinkedGeoData: A Core for a Web of

Spatial Open Data. Semantic Web Journal, 2011.
17. J. Unbehauen, S. Hellmann, S. Auer, and C. Stadler. Knowledge extraction from structured

sources. In S. Ceri and M. Brambilla, editors, SeCO Book, volume 7538 of Lecture Notes in
Computer Science, pages 34–52. Springer, 2012.


	Formal Linked Data Visualization Model 

