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Abstract. The amount of bio-medical data available over the Web grows
exponentially with time. The large volume of the currently available data
makes it difficult to explore, while the velocity at which this data changes
and the variety of formats in which bio-medical is published makes it
difficult to access them in an integrated form. Moreover, the lack of an
integrated vocabulary makes querying this data difficult. In this paper,
we advocate the use of Linked Data to integrate, query and visualize big
bio-medical data. As a proof of concept, we show how the constant flow
of bio-medical publications can be integrated with the 7.36 billion large
Linked Cancer Genome Atlas dataset (TCGA). Then, we show how we
can harness the value hidden in that data by making it easy to explore
within a browsing interface. We evaluate the scalability of our approach
by comparing the query execution time of our system with that of FedX
on Linked TCGA.
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1 Introduction

Over the last years, the amount of Linked Data published has grown signifi-
cantly. Especially the bio-medical data available as RDF is comprised in partly
very large datasets, one of the newest additions to this family of datasets being
Linked TCGA [2], a 7.6-billion-triples-strong dataset. Making bio-medical data
available as Linked Data presents the obvious advantage of easing the integration
of this data, which promises to support bio-medical experts during the analysis
of, exploration of and extraction of novel knowledge from this data. Yet, the
necessary data management solutions for RDF data still need to be perfected
to obtain scalable integrated solutions that can deal with Big Linked Data, i.e.,
Linked Data which display the three main characteristics of Big Data (volume,
velocity and value).

In this paper, we present a scalable approach that aims to support the
serendipitous discovery of bio-medical hypotheses by providing an interface for



the analysis and exploration of Big Linked Data. The back-end of our applica-
tion supports the management and querying of high volumes of Linked Data
as well as the continuous integration of this data with novel data from external
data streams. Here, we consider especially Linked TCGA and its continuous in-
tegration with RDF data extracted from the semi-structured and unstructured
content of PubMed. We chose PubMed because it contains more than 23 million
publications and provide an interface that allows discovering novel publications
as soon as they are made available. The user interface developed on top of the
resulting dataset presents an easily understandable, integrated, up-to-date view
of the information available in the back-end. The intuition behind our work is
that when presented with such an interface, experts can detect unexpected corre-
lations amongst known resources. These unexpected correlations can then form
the basis for a serendipitous discovery. For example, bio-medical experts could
detect that cancers of type A tend to metastasize into cancers of a type B, lead-
ing to the question of why this particular cell migration occurs. This question
could then lead to the serendipitous formulation of new research questions, e.g.,
pertaining to the rheology of certain cancer types.

In the following, we present the datasets underlying our implementation. We
then give an overview of the architecture of our tool and show how it support
volume, velocity and variability to generate novel value from large datasets.
We then present the user interface of our tool as well as possible usages of our
interface. The evaluation section shows that our data infrastructure outperforms
the state of the art in the management of large amounts of data while the
conclusion gives insights in future work.

2 Linked TCGA

The aim of TCGA project is to accelerate the understanding of the molecular
basis of cancer through the application of genome analysis technologies, includ-
ing large-scale genome sequencing. Furthermore, the TCGA data portal provides
public access4 to cancer data in order to enable researchers perform cancer anal-
ysis on real data. Currently, the said portal contains data for 30 different cancer
types collected from 9000 patients5. To data, 21 data files are collected for each
patient, leading to a total of 147,645 raw data files (12.7 TB), of which 53,694
contain processed data [2]. According to information in the TCGA portal, this
is only 46% of the expected data with new data being submitted every day.6

Linked TCGA is the RDFized version of the Cancer Genome Atlas presented
in [2]. The main aim of this work is to facilitate the querying and live integration
of TCGA from multiple sources via remote SPARQL query processing. The total
estimated size of the Linked TCGA data is over 30 billion triples [2]. In this work,
we use a total of 7.36 billions triples of Linked TCGA obtained from 10 tumours.
The details about data is given is in Table 1.

4 https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp
5 https://tcga-data.nci.nih.gov/tcga/
6 http://cancergenome.nih.gov/
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Tumor Type Original Size(GB) Refined Size (GB) RDFized Size (GB) Triples (Million)

Cervical (CESC) 8.75 2.44 8.86 400.19
Rectal adenocarcinoma (READ) 8.07 2.25 9.04 413.31
Papillary Kidney (KIRP) 10.40 2.90 10.4 469.65
Bladder cancer (BLCA) 12.16 3.39 12.3 556.38
Acute Myeloid Leukemia (LAML) 14.85 4.14 15.1 684.05
Lower Grade Glioma (LGG) 17.08 4.76 17.1 778.82
Prostate adenocarcinoma (PRAD) 18.05 5.03 18.1 821.01
Lung squamous carcinoma (LUSC) 20.63 5.75 20.5 927.08
Cutaneous melanoma (SKCM) 23.22 6.47 23.2 1050.94
Head and neck squamous cell(HNSC) 27.6 7.69 27.5 1245.37

Table 1: Overview of the TCGA data used by our approach.
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Fig. 1: General architecture of the proposed system

3 General architecture of our solution

The general architecture of our system is shown in Figure 1 and is explained in
the following sections.

3.1 TopFed

The backbone of our approach is the TopFed7, a Linked TCGA federated SPARQL
query processing engine specially designed for efficient integration of data from
multiple TCGA SPARQL endpoints. The insight behind this engine is to use the
intelligent distribution of data to reduce the number of sources selected (with-
out losing the recall) for processing federated SPARQL queries. By selecting
fewer sources than state-of-the-art approaches such as FedX [3], our approach
can compute the answer to queries significantly faster, leading to acceptable
response time for large Linked TCGA SPARQL queries.

3.2 Integration of publication data

We have considered a list of keywords related to TCGA tumors and search
PubMed articles using the Entrez Programming Utilities 8 which return a list of

7 https://code.google.com/p/topfed/
8 http://www.ncbi.nlm.nih.gov/books/NBK25501/
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PubMed publication IDs. Once we got the list of article IDs which are tagged
with the keywords, we used the E-utilities again to retrieve meta information
about each article by providing the article ID as input. The response of the
query, returned in XML format, is then converted to RDF using our custom
written script and continuously loaded into the TCGA SPARQL endpoints.

3.3 Visualization

One of the most prominent challenges in delivering and using data-driven so-
lutions for any type of human process is the provision of data visualization/-
summarization tools that are intuitive and easy to use for the experts at whom
the datasets are targeted. Summarizing and displaying the evidence that these
experts need for making informed decisions, reusing the results in new contexts
and addressing their own challenges is the main task of such data visualization
tools. The current method by which physicians look for information on the web
is through peer-reviewed publications. However, with the indexing of over 10000
papers in PubMed every year, keeping current with the literature and using this
knowledge to derive new research questions has become a herculean task.

To facilitate the intuitive exploration of the information available in TCGA
datasets and tumor-related publications, we devised an interactive Visual Ana-
lytics Platform (Figure 2). The platform is composed of two panels. The main
panel features a highly dense, force-directed network graph linking the different
tumor typologies analysed in TCGA to the publication resources where more
information about these tumors can be discovered. The linking/display method
associates two publications if they have more than 5 common Mesh Terms and
are linked using blue-colored edges. Selecting a publication node presents the
metadata of the publication (author, abstract, mesh terms, chemicals cited, etc.)
and a link to the original PubMed page. On the other hand, selecting a tumor
typology node will aggregate the data collected on different cancer patients with
that tumour type.

In addition to the tumour data, we also display methylation data as this phe-
nomena is known to be highly relevant for cancer progression detection. Methy-
lation patterns in cancer cells are known to reflect the silencing or ”turning-
off” of cancer protecting genes (i.e. tumour suppressor genes), thus allowing the
cancer to progress. These results are visualized as scatter plots in a tabbed in-
terface and reflect the amount of methylation in each genomic position, where
the chromosomes are indicated against the Y-axis and the specific position in
the chromosome is on the X-axis. The circles reflect the positions in the genome
where methylation was uniquely detected in the cancer cells, and the size of
the circles is directly proportional to the amount (beta value) of methylation in
that region. The interface allows the simultaneous comparison of these results
between different patients and also links the underlying methylated gene to the
publication(s) which mentions it. A prototype of the interface is available at
http://srvgal78.deri.ie/tcga-pubmed/.

http://srvgal78.deri.ie/tcga-pubmed/


Fig. 2: Visual Analytics Platform for the Integrated Visualization of TCGA
methylation datasets and related PubMed resources

4 Use Cases

Our framework enables a variety of use cases, of which two are explained below.

4.1 Enabling Evidence-based genomic medicine

Data from TCGA is of high value for oncologists as it enables matching the
evidence that they find for their own patients with those enrolled in the TCGA
project, including both clinical and genomic sets. It is well known that specific
genomic alterations in each individual’s cancer affect response to treatment and
sensitivity to drugs. As such, a physician could, for example, use our visualiza-
tion to compare their own patient’s methylation patterns against that for other
patients enrolled in TCGA. Since genomic information in TCGA is linked with
each patient’s clinical prognostic and follow-up, the physician could assert, based
on the similarity of genomic results, whether a patient would respond well to
a given drug by observing the other patient’s reaction. What this also enables
is medical decisions that are highly informed by the evidence. Cancer, we now
know, is a genetic disease. This means that the location where the tumour occurs
(e.g. brain, liver, etc) is less relevant for its treatment than the genetic signature
that the cancer cells express (i.e. whether genes are silenced, amplified, etc).
However, drugs that are approved by regulatory agencies, and many publica-
tion resources, are still approved in the context of a single tumour typology. By
making use of cross-resource linking, we enable the discovery on whether a drug
could be applied to more than on tumour typology, by linking the two typologies



through their genomic signature. As an example, a publication resource that is
linked to two or more tumor typologies may mean that a discovery has been
made that affects both cancer typologies and therefore the same drug or set of
drugs may be applied.

4.2 Generation of new hypotheses

In addition to aiding evidence based genomic medicine, the availability of this
type of linked information can also facilitate inter-disciplinary research. Some
types of cancer (e.g. breast cancer) are more common than others and therefore
the intricacies of their genomic signatures and genetic events tend to be more
well known. However, for many rare cancers (e.g. pancreatic cancer), knowledge
is more scattered and harder to find. The resource that we make available will
enable researchers in the less common tumor typologies to discover association
between their cancer of interest, and those that are more well studied. By finding
papers where two tumor typologies co-occur, a researcher can hypothesize that
the treatments and genomic events that are valid and have been proved to be
relevant in the most common type of cancer, may also be relevant in the less
common tumor typology. They can then exploit the genomic data in both cases
to support or reject this hypothesis.

Another possible arena for hypothesis generation is that of tumour cell mi-
gration. Cancer experts have shown in the past that, for some tumor typologies,
metastasis occurs preferentially in a specific tissue type. This is known as the
”seed-and-soil” hypothesis, meaning that cancer cell ”seeds” travelling in the
blood vessels prefer some specific tissues to metastasize as they are optimal
”soil” for their growth. For example, skin tumour cells preferentially metastasize
in the brain. As such, co-occurrence of tumor typologies in publications may
mean that cells of a particular tumor typology that is the main subject of a
publication, preferentially migrate to the tissue of the second tumor typology,
co-occurring in the publication but not necessarily the main subject of the paper.

5 Evaluation

5.1 Experimental Setup

The aim of our evaluation was to show that the system presented above is well
suited for the management of large volumes of Linked Data and can consequently
support the extension of this data by novel RDF data extracted from other
data streams. We thus compared TopFed with FedX [3] on 25 patients genomic
results (clinical, methylation,SNP, exon-expression, gene-expression, miRNA,
RNAseq2) extracted from 10 tumours. All of the data was distributed across
10 local SPARQL endpoints sharing a dedicated network.

We considered 10 queries of which 4 were star-shaped [1] and the remaining
queries were path-shaped or hybrid (path+star) and contained between 3 and
7 triple patterns. We ran each of the queries 10 times and present the average



run-time for each of the queries. The query evaluation experiments were carried
out on a 2.53GHz i5 processor with 4GB RAM. All of the data along with queries
used for our evaluation can be found at TopFed home page.9

5.2 Results
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Fig. 3: Comparison of query runtimes

As shown in Figure 3, we outper-
form FedX significantly on 90% of
the queries. As an overall performance
evaluation, the query run time of
TopFed is about one third to that of
FedX. While our best run-time (query
2, query 3) is more than 75 times
smaller than that of FedX. We only
have the same run-time for query 5.
This is simply due to the number of
sources selected by FedX being al-
ready optimal, thus efficient source
selection based leading improvement
was not possible. Due to smart source
selection, we believe that our approach scales well on a large datasets query
federation.

6 Conclusion and Future Work

In this paper, we presented a scalable solution for the continuous data integration
coming from two large datasets. Further, we proposed a visual environment that
aims to easily understand the data and support the serendipitous discovery of
bio-medical hypotheses. We aim to integrate the complete Linked TCGA data
(over 30 billions) with other digital libraries in future work. We will also explore
new ways to further improve our data visualization platform.
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7 Appendix

In the following, we show how we fulfill each of the requirements of the Big Data
Track.

7.1 Minimal Requirements

– Data Volume: Our implementation combines two very large datasets. The
current version of Linked TCGA encompasses 7.6 billion triples with most of
the quality control parameters stripped out. PubMed contains more than 23
million publications, each of which can be parsed into an arbitrary number
of triples.

– Data Variety: We deal with both structured and unstructured data from
diverse sources and in different formats. The Linked TCGA data was ex-
tracted from CSV files that were preprocessed, cleaned and transformed to
RDF. Each of these files, however, though originating from the same source,
are of very different nature as they measure many biological parameters -
clinical diagnostic and outcome information, but also genetic and molecular
information. We process the metadata associated with PubMed publications
(especially the MESH annotations, title and authors) and transform them
into RDF. Unstructured data (i.e., the publication abstracts) is processed to
extract mentions of gene names and cancers.

– Data Velocity: the TCGA data doubles in size every two months. Similarly,
the rate of new paper publication is in the order of 10000 per month10. Our
framework can easily integrate novel data streams or data sources thanks to
the underlying federated query engine.

7.2 Additional Desirable Features

– Usability: We devised an integrated visualization platform for the billions of
triples underlying our application. This visualization allows bio-medical ex-
perts 1) to gain an overview of publications on bio-medical topics of interest,
especially related to TCGA resources and 2) to formulate hypotheses w.r.t.
to the interaction between cancers types, genes, drugs, etc.

– Value: By integrating Linked TCGA and related publications, discovered by
our framework, annotated in PubMed, we create added value as we allow
bio-medical experts not only to explore billions of triples but also to get a
concise overview of the relations between the resources in the data set and
the publications on these resources.

– Functionality: Our tool covers functionality centered around ingesting data
streams from PubMed, extracting and connecting data from these streams
to Linked TCGA and making the integrated data browse-able through an
integrative visualization paradigm. We can serve novel data within a time
scope suggested by the end user.

10 Data from http://www.nihms.nih.gov/stats/
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