
OWL Class Expression to SPARQL Rewriting

Lorenz Bühmann, Jens Lehmann (nicht sicher welche Reihenfolge)

Universität Leipzig, Institut für Informatik, AKSW,
Postfach 100920, D-04009 Leipzig, Germany,

{buehmann|lehmann}@informatik.uni-leipzig.de
http://aksw.org

Abstract. ... connection between OWL and SPARQL ...

1 Introduction

Motivation: OWL/DLs wurden über Jahrzehnte als Sprachen entwickelt um
Konzepte einer Domäne abzubilden. Während OWL durchaus verbreitet ist,
gibt es trotzdem viele Fälle in denen Wissensbasen direkt eher per SPARQL
zugreifbar sind. Mit diesem Artikel soll ermöglicht werden OWL-Ausdrücke
in SPARQL umzuschreiben, so dass dabei OWL und SPARQL Semantik
berücksichtigt werden.

Verweis auf
http://sparqr.dl-
learner.org

Verweis auf
http://sparqr.dl-
learner.org

Verweis auf ISWC
Pattern Enrich-
ment Paper

Verweis auf ISWC
Pattern Enrich-
ment Paper

2 Syntax and Semantics of Description Logics

Aus PhD kopiert.
Es sollte noch et-
was gekürzt und
geändert wer-
den, aber auch
nicht zu kurz,
damit das Paper
self-contained ist
und die Review-
er/Leser auch ver-
stehen was mit
Interpretatio-
nen in Beschrei-
bungslogiken
gemeint ist.

Aus PhD kopiert.
Es sollte noch et-
was gekürzt und
geändert wer-
den, aber auch
nicht zu kurz,
damit das Paper
self-contained ist
und die Review-
er/Leser auch ver-
stehen was mit
Interpretatio-
nen in Beschrei-
bungslogiken
gemeint ist.

In this section, we introduce description logics including their syntax and
semantics.

Description logics is the name of a family of knowledge representation (KR)
formalisms. They emerged from earlier KR formalisms like semantic networks
and frames. Their origin lies in the work of Brachman on structured inheritance
networks [?]. Since then, description logics have enjoyed increasing popularity.
They can essentially be understood as fragments of first-order predicate logic.
They have less expressive power, but usually decidable inference problems and
a user-friendly variable free syntax.

Description logics represent knowledge in terms of objects, concepts, and
roles. Concepts formally describe notions in an application domain, e.g. one
could define the concept of being a father as “a man having a child” (Father ≡
Man u ∃hasChild.> in DL notation). Objects are members of concepts in the
application domain and roles are binary relations between objects. Objects cor-
respond to constants, concepts to unary predicates, and roles to binary predicates
in first-order logic.

http://aksw.org

In description logic systems information is stored in a knowledge base. It is
sometimes divided in two parts: TBox and ABox. The ABox contains asser-
tions about objects. It relates objects to concepts and other objects via roles.
The TBox describes the terminology by relating concepts and roles. For some
expressive description logics this clear separation does not exist. Furthermore,
the notion of an RBox, which contains knowledge about roles, is sometimes used
in expressive description logics. We will usually consider those axioms as part of
the TBox in this thesis.

As mentioned before, DLs are a family of KR formalisms. We use the terms
description language and description logic synonymously for one particular ele-
ment of this family. First, we introduce the ALC description logic as an example
language. ALC is a proper fragment of OWL [?] and is generally considered to
be a prototypical description logic for research investigations. ALC stands for
attributive language with complement. It allows to construct complex concepts
from simpler ones using various language constructs. The next definition shows
how such concepts can be built.

Definition 1 (Syntax of ALC concepts). Let NR be a set of role names
and NC be a set of concept names (NR ∩ NC = ∅). The elements of NC are
also called atomic concepts. The set of ALC concepts is inductively defined as
follows:

1. Each atomic concept is an ALC concept.
2. If C and D are ALC concepts and r ∈ NR a role, then the following are also
ALC concepts:
– > (top), ⊥ (bottom)
– C tD (disjunction), C uD (conjunction), ¬C (negation)
– ∀r.C (value/universal restriction), ∃r.C (existential restriction)

Example 1 (ALC concepts). Some examples of complex concepts in ALC are:

– Man u ∃hasChild.>
– Man u ∃hasChild.(Rich t Beautiful)
– Man u ∃hasChild.¬Adult
– Man u ∃hasChild.∀hasFriend.ComputerScientist

Other description languages are usually named according to the expressive
features they support. The choice of language is usually a tradeoff between ex-
pressivity and complexity of reasoning. The description logic navigator1 provides
detailed information about the complexity of a particular language. The follow-
ing is a list of commonly used letters in the description logic naming scheme
along with their meaning (note that if one feature can be expressed using other
ones the letter is usually omitted in the language name).

S ALC + transitivity: For a transitive role r, we have that r(a, b) and r(b, c)
implies r(a, c).

1 http://www.cs.manchester.ac.uk/~ezolin/dl/

http://www.cs.manchester.ac.uk/~ezolin/dl/

H subroles: r v s says that r is a subrole of s, i.e. r(a, b) implies s(a, b).

I inverse roles: r− denotes the inverse role of r, i.e. r−1(a, b) iff r(b, a).

O nominals: Sets of objects can be used to construct concepts, e.g. {MONICA}
denotes the singleton set, which only contains MONICA. Nominals are useful
in cases where the instances of a concept should be enumerated, e.g. the
members of the European Union.

N number restrictions: Allows constructs of the form ≥ n r and ≤ n r to build
concepts. This is useful if one wants to define a concept like ”mother of at
least three children” (Woman u ≥ 3 hasChild).

Q qualified number restrictions: Concept constructors of the form ≥ n r.C and
≤ n r.C can be used. If C is the top concept, this is equivalent to unqualified
number restrictions. This is useful to define a concept like ”mother of at least
three male children” (Woman u ≥ 3 hasChild.Male).

F functional roles: Allows to express that a role r is functional, i.e. has at most
one filler, which is equivalent to the axiom > v ≤ 1 r.

R complex role inclusions: Axioms of the form r ◦ s v r (or r ◦ s v s) state
that when r(a, b) and s(b, c) holds, then r(a, c) (or s(a, c)) also holds. For
instance, we could use the axiom locatedIn◦partof v locatedIn to model
the part of relationship for locations. Now, if we know that Leipzig is located
in Saxony and Saxony is part of Germany, we can infer that Leipzig is located
in Germany.

D data types: Data types are used to incorporate different kinds of data,
e.g. numbers or strings. This allows, for instance, to define the concept of an
old person as a person of age 65 or higher.

While ALC is seen as a prototypical language and foundation for more ex-
pressive languages, there has also been a lot of research effort for simple lan-
guages with often tractable inference problems. Two of those languages, which
are referred to within the thesis are AL and EL:
AL is inductively defined as follows: >, ⊥, ∃r.>, A, ¬A with A ∈ NC , r ∈ NR

are AL concepts. If C and D are AL concepts, then C uD is an AL concept. If
C is an AL concept and r a role, then ∀r.C is an AL concept.
EL is inductively defined as follows: >, A with A ∈ NC are EL concepts. If

C and D are EL concepts and r ∈ NR, then C uD and ∃r.C are EL concepts.
The semantics of concepts is defined by means of interpretations. See the

following definition and Table 1 listing common concept constructors.

Definition 2 (Interpretation). An interpretation I consists of a non-empty
interpretation domain ∆I and an interpretation function ·I , which assigns to
each A ∈ NC a set AI ⊆ ∆I and to each r ∈ NR a binary relation rI ⊆ ∆I×∆I .

Example 2 (Interpreting Concepts). Let the interpretation I be given by:

∆I = {MONICA, JESSICA, STEPHEN}
WomanI = {MONICA, JESSICA}

hasChildI = {(MONICA, STEPHEN), (STEPHEN, JESSICA)}

construct syntax semantics

atomic concept A AI ⊆ ∆I

role r rI ⊆ ∆I ×∆I

nominals {o} {o}I ⊆ ∆I , |{o}|I = 1

top concept > ∆I

bottom concept ⊥ ∅
conjunction C uD (C uD)I = CI ∩DI

disjunction C tD (C tD)I = CI ∪DI

negation ¬C (¬C)I = ∆I \ CI

exists restriction ∃r.C (∃r.C)I = {a | ∃b.(a, b) ∈ rI and b ∈ CI}
value restriction ∀r.C (∀r.C)I = {a | ∀b.(a, b) ∈ rI implies b ∈ CI}
atleast restriction ≥ n r.C (≥ n r)I = {a | |({b | (a, b) ∈ rI}| ≥ n}
atmost restriction ≤ n r.C (≤ n r)I = {a | |({b | (a, b) ∈ rI}| ≤ n}

Table 1: Syntax and semantics for concepts in SHOIN .

We then have:

(Woman u ∃hasChild.>)I = {MONICA}

In the most general case, terminological axioms are of the form C v D or
C ≡ D, where C and D are (complex) concepts. The former axioms are called
inclusions and the latter equivalences. An equivalence whose left hand side is an
atomic concept is a concept definition. In some languages with low expressivity,
like AL, terminological axioms are restricted to definitions. We can define the
semantics of terminological axioms in a straightforward way. An interpretation
I satisfies an inclusion C v D if CI ⊆ DI and it satisfies the equivalence C ≡ D
if CI = DI . I satisfies a set of terminological axioms iff it satisfies all axioms
in the set. An interpretation, which satisfies a (set of) terminological axiom(s)
is called a model of this (set of) axiom(s). Two (sets of) axioms are equivalent
if they have the same models. A finite set T of terminological axioms is called a
(general) TBox. Let NI be the set of object names (disjoint with NR and NC).
An assertion has the form C(a) (concept assertion), r(a, b) (role assertion),
where a, b are object names, C is a concept, and r is a role. An ABox A is a
finite set of assertions.

Objects are also called individuals. To allow interpreting ABoxes we extend
the definition of an interpretation. In addition to mapping concepts to subsets of
our domain and roles to binary relations, an interpretation has to assign to each
individual name a ∈ NI an element aI ∈ ∆I . An interpretation I is a model of
an ABox A (written I |= A) iff aI ∈ CI for all C(a) ∈ A and (aI , bI) ∈ rI for
all r(a, b) ∈ A. An interpretation I is a model of a knowledge base K = (T ,A)
(written I |= K) iff it is a model of T and A.

Example 3 (Models of a Knowledge Base). Let the knowledge base K = (T ,A)
be given by:

TBox T :

Man ≡ ¬Woman u Person
Woman v Person

Mother ≡ Woman u ∃hasChild.>

ABox A:

Man(STEPHEN).

¬Man(MONICA).

Woman(JESSICA).

hasChild(STEPHEN, JESSICA).

We will now look at some interpretations and determine whether or not they
are a model ofK. For all interpretations, the domain {MONICA, JESSICA, STEPHEN}
is used and all object names are interpreted in the obvious way (STEPHEN is in-
terpreted as STEPHEN etc.).

Let the interpretation I1 be given by:

ManI1 = {JESSICA, STEPHEN}
WomanI1 = {MONICA, JESSICA}
MotherI1 = ∅
PersonI1 = {JESSICA, MONICA, STEPHEN}

hasChildI1 = {(STEPHEN, JESSICA)}

Clearly this does not satisfy T , because the definition Man ≡ ¬WomanuPerson is
not satisfied. We have ManI1 = {JESSICA, STEPHEN} and (¬WomanuPerson)I1 =
{STEPHEN}, which are not equal. However, I1 satisfies A.

Let the interpretation I2 be given by:

ManI2 = {STEPHEN}
WomanI2 = {JESSICA, MONICA}
MotherI2 = ∅
PersonI2 = {JESSICA, MONICA, STEPHEN}

hasChildI2 = ∅

I2 satisfies T , but not A. We have hasChild(STEPHEN, JESSICA) ∈ A, but
(STEPHENI2 , JESSICAI2) 6∈ hasChildI2 .

Let the interpretation I3 be given by:

ManI3 = {STEPHEN}
WomanI3 = {JESSICA, MONICA}
MotherI3 = {MONICA}
PersonI3 = {JESSICA, MONICA, STEPHEN}

hasChildI3 = {(MONICA, STEPHEN), (STEPHEN, JESSICA)}

I3 is a model of T and A, so it is a model of K. One may argue that nothing
in our knowledge base justifies the fact that we interpret MONICA as mother.
However, in DLs we usually have the open world assumption. This means that
the given knowledge is viewed as incomplete. There is nothing, which tells us
that MONICA is not a mother. In databases one usually uses the closed world
assumption, i.e. all facts, which are not explicitly stored, are assumed to be
false.

As we have described, a knowledge base can be used to represent the infor-
mation we have about an application domain. Besides this explicit knowledge,
we can also deduce implicit knowledge from a knowledge base. It is the aim of in-
ference algorithms to extract such implicit knowledge. There are some standard
reasoning tasks in description logics, which we will briefly describe.

In terminological reasoning we reason about concepts. The standard problems
are consistency, satisfiability and subsumption. Intuitively, consistency checks de-
tect whether a knowledge base contains contradictions. Satisfiability determines
whether a concept can be satisfied, i.e. it is free of contradictions. Subsumption
of two concepts detects whether one of the concepts is more general than the
other.

Definition 3 (Consistency). A knowledge base K is consistent iff it has a
model.

Example 4 (Consistency). The knowledge base K = {A1 ≡ A2 u ¬A2, A1(a)} is
not consistent, since A1 is equivalent to ⊥ and has an asserted instance a.

Definition 4 (Satisfiability). Let C be a concept and T a TBox. C is sat-
isfiable iff there is an interpretation I such that CI 6= ∅. C is satisfiable with
respect to T iff there is a model I of T such that CI 6= ∅.

Example 5 (Satisfiability). ManuWoman is satisfiable. However, it is not satisfiable
with respect to the TBox in Example 3.

Definition 5 (Subsumption, Equivalence). Let C, D be concepts and T a
TBox. C is subsumed by D, denoted by C v D, iff for any model I we have
CI ⊆ DI . C is subsumed by D with respect to T , denoted by C vT D, iff for
any model I of T we have CI ⊆ DI .

C is equivalent to D (with respect to T), denoted by C ≡ D (C ≡T D), iff
C v D (C vT D) and D v C (D vT C).

C is strictly subsumed by D (with respect to T), denoted by C @ D (C @T
D), iff C v D (C vT D) and not C ≡ D (C ≡T D).

Example 6 (Subsumption). Mother is not subsumed by Woman. However, Mother
is subsumed by Woman with respect to the TBox in Example 3.

Subsumption allows to build a hierarchy of atomic concepts, commonly called
the subsumption hierarchy. Analogously, for more expressive description logics
role hierarchies can be inferred.

In assertional reasoning one reasons about objects. As one relevant task for
learning in DLs, the instance check problem is to find out whether an object is an
instance of a concept, i.e. belongs to it. A retrieval operation finds all instances
of a given concept.

Definition 6 (Instance Check). Let A be an ABox, T a TBox, K = (T ,A)
a knowledge base, C a concept, and a ∈ NI an object. a is an instance of C with
respect to A, denoted by A |= C(a), iff in any model I of A we have aI ∈ CI .
a is an instance of C with respect to K, denoted by K |= C(a), iff in any model
I of K we have aI ∈ CI .

To denote that a is not an instance of C with respect to A (K) we write
A 6|= C(a) (K 6|= C(a)).

We use the same notation for sets S of assertions of the form C(a), e.g. K |= S
means that every element in S follows from K.

Definition 7 (Retrieval). Let A be an ABox, T a TBox, K = (T ,A) a knowl-
edge base, C a concept. The retrieval RA(C) of a concept C with respect to A
is the set of all instances of C: RA(C) = {a | a ∈ NI and A |= C(a)}. Similarly
the retrieval RA(C) of a concept C with respect to K is RK(C) = {a | a ∈
NI and K |= C(a)}.

Example 7 (Instance Check, Retrieval). In Example 3 we have RK(Woman) =
{JESSICA, MONICA}. JESSICA and MONICA are instances of Woman, because in any
model I of K we have JESSICAI ∈ WomanI and MONICAI ∈ WomanI .

We introduce some further notions, which are used in the thesis. A concept
is in negation normal form iff negation only occurs in front of concept names.
The length of a concept is defined in a straightforward way, namely as the sum
of the numbers of concept names, role names, quantifier, and connective symbols
occurring in the concept. In particular, for ALC we have:

Definition 8 (Length of an ALC Concept). The length |C| of a concept C
is defined inductively (A stands for an atomic concept):

|A| = |>| = |⊥| = 1

|¬D| = |D|+ 1

|D u E| = |D t E| = 1 + |D|+ |E|
|∃r.D| = |∀r.D| = 2 + |D|

The depth of a concept is the maximal number of nested concept constructors.
The role depth of a concept is the maximal number of nested roles. A subconcept
of a concept C is a concept syntactically contained in C. For brevity we some-
times omit brackets. In this case, constructors involving quantifiers have higher
priority, e.g. ∃r.> u A means (∃r.>) u A. In several proofs in the thesis we use
a convenient abbreviated notation to denote ∀r chains and ∃r chains:

∀rn = ∀r.∀r︸ ︷︷ ︸
n−times

∃rn = ∃r.∃r︸ ︷︷ ︸
n−times

For more detailed information about description logics, we refer the interested
reader to [?,?,?] .

3 SPARQL Semantics

To show the connection to SPARQL, we first introduce basic notions. For a
complete definition of the SPARQL syntax and semantics, however, we refer
to [?], [?] and the official W3C recommendation2. We use the SPARQL algebra
syntax and semantics in [?] in this section and repeat the essential notions below.

We use V to denote SPARQL variables. A mapping µ from V to a set U is a
partial function µ : V → U . The domain of µ, denoted by dom(µ), is the subset
of V where µ is defined. var(P) is the set of variables contained in a basic graph
pattern P . Given a triple pattern t and a mapping µ with var(t) ⊆ dom(µ), µ(t)
is the triple pattern obtained by replacing the variables in t according to µ. This
can be extended to a basic graph pattern P by defining µ(P) = ∪t∈P {µ(t)}.

The evaluation of a basic graph pattern P , denoted by [[P]], in A is then de-
fined as the set of mappings [[P]]A = {µ : V → U | (dom(µ) = var(P) and µ(P) ⊆
A}. This can be extended to graph patterns and filters. Note that we will some-
times drop A if it is clear from the context. In the following, we will only in-
troduce the notions required in our proof. For a conjunction of several triple
patterns, their semantics are defined as [[(P1 AND . . . AND Pn)]] = [[P1]] on
· · · on [[Pn]]. The join operator for two sets of mappings Ω1 and Ω2 is defined as
Ω1 on Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2 are compatible mappings }.
Two mappings µ1 and µ2 are compatible if for all x ∈ dom(µ1) ∩ dom(µ2), it
is the case that µ1(x) = µ2(x). The semantics of UNION patterns are defined
as [[P1 UNION . . . UNION Pn]] = [[P1]] ∪ · · · ∪ [[Pn]]. For filters, we need to
introduce the notion of satisfaction. Given a mapping µ and a built-in condi-
tion R, the satisfaction of R by µ is denoted by µ |= R in a three valued logic
(true, false, error). In our case, built-in conditions of the form ?x = ?y are
relevant, which result in an error if ?x 6∈ dom(µ) or y 6∈ dom(µ). They are true

if µ(?x) = µ(?y) and false otherwise. The built-in construct of the form ?v IN

S where S is a set of expressions, is satisfied if µ(?v) ∈ S and false otherwise.
NOT EXISTS constructs in filters take a graph pattern P as input and evaluate
it. They result in false if µ ∈ [[P]] and true otherwise. The semantics of a filter
in A is defined as [[P FILTER R]]A = {µ ∈ [[P]]A | µ |= R}.

A SELECT query restricts the evaluation of a basic graph pattern to a set
of variables W . The evaluation of a SELECT query (W,P) over a dataset A is
the set of mappings [[(W,P)]]A = {µ|W | µ ∈ [[P]]A}. Since the interpretation
of DL a concept results in a subset of the domain of the interpretation, we need
to view such an evaluation as a set. Assuming a set Ω of mappings is given, this
can be achieved by performing a selection over a single variable v and collecting
the results in a set, i.e. Ω(v) = {µ(v) | µ ∈ Ω}.

2 http://www.w3.org/TR/sparql11-query/

http://www.w3.org/TR/sparql11-query/

4 OWL Class Expression Rewriting Algorithm

Kann man das
noch für weitere
Konstrukte aus-
bauen um a) den
Kernteil des Pa-
pers umfangre-
icher zu machen
und es b) vom
ISWC-Paper et-
was abzugrenzen.

Kann man das
noch für weitere
Konstrukte aus-
bauen um a) den
Kernteil des Pa-
pers umfangre-
icher zu machen
und es b) vom
ISWC-Paper et-
was abzugrenzen.

Es ist noch nicht
ganz klar, ob wir
nicht nur den Be-
weis, sondern ev.
auch Teile des Al-
gorithmus zum
Umschreiben in
diesen externen
Artikel/Report
auslagern sollten.

Es ist noch nicht
ganz klar, ob wir
nicht nur den Be-
weis, sondern ev.
auch Teile des Al-
gorithmus zum
Umschreiben in
diesen externen
Artikel/Report
auslagern sollten.

We restrict the description of the pattern rewriting algorithm for brevity to
SubClassOf axiom patterns, as it was the most frequently used schema axiom
type we discovered during the evaluation, and secondly each TBox axiom can
be rewritten as a set of SubClassOf axioms.

Let C,D,C1, . . . , Cn be class expressions, A be an atomic class, r be an object
property, a1, . . . , an be individuals and Θ = {≤,≥,=}. Let τ(C, v) be a mapping
from a class expression C and a target variable v to a SPARQL graph pattern p
as described in Table 2. A given axiom pattern C v D can be converted into a
SPARQL query pattern p by applying p := τ(CuD). We assume that τ generates
unused query variables in its recursion.

The purpose of the SPARQL query is to determine whether instance data
is structured according to the axiom pattern. Naturally, the SPARQL queries
are only an approximation and do not employ the OWL open world assumption
or use reasoning unless provided by the SPARQL endpoint3. The goal is not to
infer axioms, but rather to detect statistical evidence for axioms in the ABox.

5 Formal Relationship between a Class Expression and
its SPARQL Rewriting

In this section, we establish a formal connection between description logic con-
cepts and the SPARQL rewriting algorithm presented in the paper. As a pre-
requiste, we assume that the reader is familiar with description logics and refer
to [?] for details. Essentially, we show that the evaluation of the interpretation
function in description logics corresponds to the evaluation of the SPARQL alge-
bra expression of the generated query according to SPARQL semantics. Another
way to view this result is that a retrieval for the description logic concept and
an execution of the rewritten query return essentially the same results4 when
considering only facts as background knowledge (no inference), employing the
unique names assumption and a closed world assumption.

In the following, we assume that an ABox A is given, which contains state-
ments of the form A(a), i.e. class assertions to named classes, and r(a, b), i.e. role
assertions. In RDF, those facts correspond to triples a rdf:type C and a r b

respectively. We denote the objects, classes and roles in the ABox with NO, NC

3 See http://www.w3.org/TR/sparql11-entailment/.
4 In DL, a set of resources is returned, whereas in SPARQL it is a set of mappings

from a variable ?var to a resource, i.e. a table with a single column. By equal, we
mean that the returned resources are the same.

http://www.w3.org/TR/sparql11-entailment/

Class Expression Ci Graph Pattern p = τ(Ci,?var)

A {?var a A.}
¬C {?var ?p ?o . FILTER NOT EXISTS {τ(C, ?var)}}
{a1, . . . , an} {?var ?p ?o . FILTER (?var IN (a1, . . . , an))}
C1 u . . . u Cn {τ(C1, ?var) ∪ . . .∪ τ(Cn, ?var)}
C1 t . . . t Cn {τ(C1, ?var)} UNION . . . UNION {τ(Cn, ?var)}
∃ r.C {?var r ?s.} ∪ τ(C, ?s)
∃ r.{a} {?var r a.}
∀ r.C

{ ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)

WHERE

{ ?var r ?s1 .

τ(C, ?s1)
}

GROUP BY ?var

}

{ SELECT ?var (count(?s2) AS ?cnt2)

WHERE

{ ?var r ?s2 }

GROUP BY ?var

}

FILTER (?cnt1 = ?cnt2) }

Θn r.C

{ ?var r ?s0.

{ SELECT ?var

WHERE

{ ?var r ?s .

τ(C, ?s)
}

GROUP BY ?var

HAVING (count(?s) Θ n)

} }

Table 2: Conversion of class expressions into a SPARQL graph pattern.

and NR, respectively. Using this, we can define an interpretation I as:

∆I = NO

aI = a

AI = {a | A(a) ∈ A} for all A ∈ NC

rI = {(a, b) | r(a, b) ∈ A} for all r ∈ NR

This interpretation is called the canonical interpretation of A [?]. In the follow-
ing, let τ be the function defined in Table 2. For simplicity, we assume that τ
returns a SPARQL query algebra expression (in contrast to a query string). We
can then show that executing the query converted from a concept C using τ over
A is the same as the canoncial interpretation of C.

Proposition 1. Let A be an ABox, C a DL concept and I the canoncial inter-
pretation of A. Then CI = [[τ(C, ?var)]]A(?var).

Proof. We prove by induction over the structure of class expressions. In each
case, we show that the DL and SPARQL semantics are equal with respect to ·I
and τ . For the cases ∀r.C and Θn r.C, the conversion between both semantics
is only sketched (due to length).
Induction Base: AI contains the explicit instances of A by the definition of
canonical interpretation and [[τ((?var, rdf : type,A))]](?var) contains the sub-
jects of triples asserting instances to A. Hence, AI = [[τ(A, ?var)]](?var).
Induction Step:

C = C1 u · · · uCn: We have CI = CI1 ∩ · · · ∩CIn , i.e. CI is the intersection of
the interpretation of all Ci. By SPARQL semantics, we also have [[τ(C, ?var)]] =
[[C1]] on · · · on [[Cn]]. For all i with 1 ≤ i ≤ n, CIi = [[τ(Ci, ?var)]](?var) follows
by induction. Since all τ(Ci, ?var) just contain a single common variable, the
compatibility check in the join operation ensures that ?var is mapped to the same
entity for the evaluation of each subpattern [[τ(Ci, ?var)]]. Thus, the result only
contains elements which are in each set CIi and, therefore, (C1 u · · · u Cn)I =
[[τ(C1 u · · · u Cn, ?var)]](?var).

C = C1 t · · · t Cn: We have CI = CI1 ∪ · · · ∪ CIn , i.e. CI is the union of
the interpretation of all Ci. For the SPARQL rewrite, we have [[τ(C, ?var)]] =
[[τ(C1 UNION . . . UNION Cn, ?var)]] = [[τ(C1, ?var)]] ∪ · · · ∪ [[τ(Cn, ?var)]],
which is trivially equal to CI by induction.

C = ¬C ′: We have CI = ∆ \ C ′I by DL semantics. For SPARQL, we have
[[τ(C, ?var)]] = {µ ∈ [[(?var, ?p, ?o)]] | µ 6∈ [[τ(C ′, ?var)]]} by filter seman-
tics. In this formula, [[(?var, ?p, ?o)]] contains mappings from ?var to all ele-
ments of the domain ∆, whereas [[τ(C ′, ?var)]](?var) = C ′I by induction. Thus,
[[τ(C, ?var)]] = ∆ \ C ′I = CI .

C = ∃r.C ′: CI = {a | ∃b 〈a, b〉 ∈ rI ∧ b ∈ C ′I} according to DL semantics.
This can also be written as a join of a binary relation r and a unary relation
C on the second argument of r (and a projection to the first argument of r),
i.e. CI = π1(rI on2=1 C ′I). For SPARQL, we can evaluate [[τ(C, ?var)]] =
[[(?var, r, ?s)]] on [[τ(C ′, ?s)]], i.e. we have the same structure. [[(?var, r, ?s)]]
corresponds to rI and [[τ(C ′, ?s)]] corresponds to C ′I by induction. Thus, we
get [[τ(C, ?var)]] = [[τ(C, ?var)]](?var). We do not treat ∃r.{a} in the definiton
of τ separately as it only provides a shortcut to a longer equivalent query.

C = {a1, . . . , an}: By DL semantics, we have CI = {aI1 , . . . , aIn}. For SPARQL,
we have [[τ(C, ?var)]] = {µ ∈ [[(?var, ?p, ?o)]] | µ(?var) ∈ CI} by filter seman-
tics. Similar to negation, [[(?var, ?p, ?o)]] contains mappings from ?var to all
elements of the domain ∆ (and is only used as a dummy since filters cannot

stand alone), whereas µ(?var) ∈ CI restricts those exactly to the elements of
CI .

C = ∀r.C ′ (sketch): By DL semantics, we have (∀r.C)I = {a | ∀b : 〈a, b〉 ∈
rI implies b ∈ C ′I}, i.e. for all fillers of r, we need to check whether they are in
C ′. In τ(C, ?var), we achieve this by first counting the number of all fillers of r in
a sub-select (?cnt1) and then counting the number of all fillers of r belonging to
C ′ (?cnt2). This is done for each subject of r (GROUP BY ?var). All subjects, for
which both counts are equal, are part of [[τ(C, ?var)]], i.e. the SPARQL query
corresponds exactly to DL semantics.

C = Θn r.C (sketch): By DL semantics, we have (Θn r)I = {a | |({b | (a, b) ∈
rI}| Θ n}. Again, the SPARQL query is corresponding exactly to DL semantics:
In the SPARL query, we count the fillers of r (count(?s)) grouped by subject
(GROUP BY ?var). The HAVING expression is then used to verify whether the
cardinality restriction is satisfied.

6 Related Work

7 Conclusions and Future Work

References

1. M. Arenas, C. Gutierrez, and J. Pérez. On the semantics of sparql. In Semantic
Web Information Management, pages 281–307. Springer, 2010.

2. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

3. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2007.

4. R. J. Brachman. A structural paradigm for representing knowledge. Technical
Report BBN Report 3605, Bolt, Beraneck and Newman, Inc., Cambridge, MA,
1978.

5. P. Hitzler, M. Krötzsch, and S. Rudolph. Foundations of Semantic Web Technolo-
gies. CRC Press/Chapman & Hall, 2009.

6. I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In P. Do-
herty, J. Mylopoulos, and C. A. Welty, editors, Proceedings, Tenth International
Conference on Principles of Knowledge Representation and Reasoning, Lake Dis-
trict of the United Kingdom, June 2-5, 2006, pages 57–67. AAAI Press, 2006.

7. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

8. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of sparql. ACM
Transactions on Database Systems (TODS), 34(3):16, 2009.

	OWL Class Expression to SPARQL Rewriting
	Lorenz Bühmann, Jens Lehmann (nicht sicher welche Reihenfolge)

