
TBSL Question Answering System Demo

Konrad Höffner, Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-Cyrille
Ngonga Ngomo, Daniel Gerber, Phillip Cimiano

Universität Leipzig, IFI/AKSW

Abstract. As an increasing amount of RDF data is published as Linked
Data, intuitive ways of accessing this data become more and more im-
portant. Natural language question answering approaches have been
proposed as a good compromise between intuitiveness and expressiveness.
We present a user interface for the template based TBSL system which
covers the full question answering pipeline and answers factual questions
with a list of RDF resources. Users can ask full-sentence, English factual
questions and get a list of resources which are then visualized using those
properties which are expected to carry the most important information
for the user. The available knowledge bases are (1) DBpedia for general
domain question answering and (2) Oxford real estate for housing searches.
However, the system is easily extensible to other knowledge bases.

Keywords: Question Answering, Semantic Web, Natural Language Patterns,
SPARQL

1 Introduction

As more and more RDF data is published as Linked Data, developing intuitive
ways of accessing this data becomes increasingly important. One of the main
challenges is the development of interfaces that exploit the expressiveness of the
underlying data model and query language, while hiding their complexity.

As a good compromise between intuitiveness and expressiveness, question
answering (QA) approaches allow users to express arbitrarily1 complex infor-
mation needs in natural language without requiring them to be aware of the
underlying schema, vocabulary or query language. Several question answering
systems for RDF data have been proposed in the past, for example, Aqualog
[5,7], PowerAqua [8], NLP-Reduce [2] and FREyA [1]. Many of these systems
map a natural language question to a triple-based representation. For example,
consider the simple question Who wrote The Neverending Story?. PowerAqua2

would map this question to the triple representation

〈[person,organization],wrote,Neverending Story〉.
1 At least as complex as can be represented in the query language.
2 Accessed via the online demo at http://poweraqua.open.ac.uk:8080/

poweraqualinked/jsp/index.jsp.

http://poweraqua.open.ac.uk:8080/poweraqualinked/jsp/index.jsp
http://poweraqua.open.ac.uk:8080/poweraqualinked/jsp/index.jsp


Then, by applying similarity metrics and search heuristics, it would retrieve
matching subgraphs from the RDF repository. For the above query, the following
triples would be retrieved from DBpedia, from which the answer “Michael Ende”
can be derived:

〈Writer, IS A,Person〉
〈Writer, author,The Neverending Story〉

While this approach works very well in cases where the meaning of the query
can be captured easily, it has a number of drawbacks, as in many cases the
original semantic structure of the question can not be faithfully captured using
triples. For instance, consider the questions 1a and 2a below. PowerAqua would
produce the triple representations in 1b and 2b, respectively. The goal, however,
would be SPARQL queries3 like 1c and 2c, respectively.

1. (a) Which cities have more than three universities?
(b) 〈[cities],more than,universities three〉
(c) SELECT ?y WHERE {

?x rdf:type onto:University .

?x onto:city ?y .
}

HAVING (COUNT(?x) > 3)

2. (a) Who produced the most films?
(b) 〈[person,organization],produced,most films〉
(c) SELECT ?y WHERE {

?x rdf:type onto:Film .

?x onto:producer ?y .
}

ORDER BY DESC(COUNT(?x)) OFFSET 0 LIMIT 1

Such SPARQL queries are difficult to construct on the basis of the above men-
tioned triple representations, as aggregation and filter constructs arising from
the use of specific quantifiers are not faithfully captured. What would be needed
instead is a representation of the information need that is much closer to the
semantic structure of the original question. Thus, the TBSL approach to question
answering over RDF data relies on a parse of the question to produce a SPARQL
template that directly mirrors the internal structure of the question and that,
in a second step, is instantiated by mapping the occurring natural language
expressions to the domain vocabulary. For example, a template produced for
Question 2a would be:

3. SELECT ?x WHERE {
?x ?p ?y .

?y rdf:type ?c .
}

ORDER BY DESC(COUNT(?y)) LIMIT 1 OFFSET 0

3 Assuming a DBpedia namespace with onto as prefix
<http://dbpedia.org/ontology/>.



In this template, c stands proxy for the URI of a class matching the input
keyword films and p stands proxy for a property matching the input keyword
produced. In a next step, c has to be instantiated by a matching class, in the
case of using DBpedia onto:Film, and p has to be instantiated with a matching
property, in this case onto:producer. For instantiation, we exploit an index as
well as a pattern library that links properties with natural language predicates.

This approach is shown [6] to be competitive and specific cases of questions
that can be precisely answered with this approach but not with competing
approaches are discussed there. This is done by evaluating it against the QALD
benchmark, where of the 50 questions, 34 are manually determined to be solvable
and 19 are answered fully correctly.

The main contribution of this paper is to provide a practical proof-of-concept
of the TBSL methodology and its flexibility in adapting to different knowledge
bases.

In the online demo, users can choose between two different knowledge bases:
DBpedia [3] is the main information hub of the semantic web and contains
factual information about several million resources and hundreds of millions of
facts about them. The Oxford real estate knowledge base [4] contains relevant
information for potential house-buyers in the Oxford area, such as the price,
location, number of bedrooms and bathrooms as well as images and textual
descriptions.

In the following section we present an overview of the system’s architecture,
in Section 3, we describe the online demo and finally we elaborate about future
work.

2 Architecture

Figure 1 gives an overview of our approach. The input question, formulated by the
user in natural language, is first processed by a POS tagger. On the basis of the
POS tags, lexical entries are created using a set of heuristics. These lexical entries,
together with pre-defined domain-independent lexical entries, are used for parsing,
which leads to a semantic representation of the natural language query, which is
then converted into a SPARQL query template. The query templates contain
slots, which are missing elements of the query that have to be filled with URIs.
In order to fill them, our approach first generates natural language expressions
for possible slot fillers from the user question using WordNet expansion. In
a next step, sophisticated entity identification approaches are used to obtain
URIs for those natural language expressions. These approaches rely both on
string similarity as well as on natural language patterns which are compiled from
existing structured data in the Linked Data cloud and text documents. This
yields a range of different query candidates as potential translations of the input
question. It is therefore important to rank those query candidates. To do this,
we combine string similarity values, prominence values and schema conformance
checks into a score value. The highest ranked queries are then tested against the



Natural 
Language 
Question

Semantic 
Representaion

SPARQL 
Query 

Templates

Templates 
with URI slots

Ranked SPARQL 
Queries

Answer

LOD

Entity identification

Entity and Query Ranking

Query 
Selection

Resources
and Classes

SPARQL 
Endpoint

Type Checking
and Prominence

BOA Pattern
Library

Properties

Tagged 
Question

Domain Independent 
Lexicon

Domain Dependent 
Lexicon

Parsing

Corpora?

!
Loading

State

Process

Uses

Fig. 1. Overview of the template based SPARQL query generator.

underlying triple store and the best answer is returned to the user. The approach
is explained in more detail in the original publication [6].

3 Demo Description

The online demo can be found at http://autosparql-tbsl.dl-learner.org/.
As the users enters a question in the search field, the list of answer resources
is visualized, see Figure 2. As the answer type of our system is a list of RDF
resources, only factual questions which can be answered by such a list can be
answered. Examples of unanswerable queries are “How old is Stephen King?”,
“Why is the sky blue?” and “Is the pope catholic?”.

Additional Functionality In case the question is wrongly interpreted, expert users
can choose among different interpretations, see Figure 3. When using the Oxford
knowledge base, there are three additional features: (1) the resources can be
sorted by criteria such as the price or number of rooms, (2) they can be shown
according to their price in a bar graph and (3) they can be displayed in a map.

Identifying Relevant Information While for Oxford houses the set of properties
is fixed, in DBpedia, a RDF resource can have a big number of properties which
leads to a very wide row in our table layout and makes it hard for a user to find
the relevant information. To shrink the number of properties visible by default,
those properties are internally sorted by their frequency in the answer set and
are filtered by first applying an absolute threshold and then selecting only the k

http://autosparql-tbsl.dl-learner.org/


properties with the highest frequencies. Furthermore there is a manual blacklist
that contains properties which relate to Wikipedia or DBpedia articles instead of
the resources they represent and are typically not relevant for a user in a question
answering context, such as wikiPageUsesTemplate. If a users wishes to add a
property which is not included in the default selection, the property can always
be added by selecting it in the “Show also” box.

Fig. 2. The question “houses with more than 2 bedrooms” on the Oxford real estate
knowledge base is answered by the with a list of houses and their properties.

Fig. 3. Expert users can choose among different interpretations for difficult questions.

Implementation The demo is implemented in Java to make use of the rich
library support for both natural language processing (NLP) and RDF. It uses
the Apache Jena4 framework which provides RDF and SPARQL capabilities and

4 jena.apache.org

wikiPageUsesTemplate
jena.apache.org


the Stanford JavaNLP API5 for NLP functions such as part-of-speech tagging.
The user interface is a web application6 and is implemented in Vaadin7, which is
a server-centric extension to the Google Web Toolkit8. The DBpedia knowledge
base is accessed via the default SPARQL endpoint9 while the much smaller
Oxford housing data is loaded into a memory model from a local RDF dump.
An Apache Solr10 index is used to get resource candidates for a template slot
from the DBpedia and Oxford knowledge bases. The inverted index provides an
efficient lookup from template slots, like “book” in “Give me all books written by
Dan Brown”, to resources like http://dbpedia.org/class/Book which contain
this word in its values for the rdfs:label or rdfs:comment property, including
near matches.

4 Future Work

We are planning improvements for both the user interface and the core algorithm.

4.1 User Interface

User Feedback We plan to increase the amount of feedback the user gets, especially
regarding his search query. For time consuming queries, an estimate tells the
user, that the program has not crashed but is still working and helps identify,
whether the users’ information needs are worth the waiting time. A detailed
explanation of errors, for example that a “why-query” is generally not possible
but that another one only fails, because the wanted information is not contained
in the knowledge base, helps the user in formulating further queries. Furthermore,
we plan to persist feedback that the program gets from the user and learn from
it, like the rejection of the default interpretation and the choice of an alternative.

Use of different Algorithms We plan to allow using additional QA algorithms so
that users can choose the algorithm that is best suited to the task at hand.

Performance and Usability Evaluation While the quality of the TBSL algorithm
has already been evaluated using the QALD benchmark (see section 1), an
evaluation of user interface has yet to be done. We plan to do a quantitative
study where we measure the time spent between the user entering a query and
the complete displaying of the results. Furthermore we plan a qualitative study
where users are asked to freely give feedback about their expectations about the
interface and their experiences with it.

5 http://www-nlp.stanford.edu/software/
6 http://autosparql-tbsl.dl-learner.org/
7 https://vaadin.com
8 http://www.gwtproject.org
9 http://dbpedia.org/sparql

10 http://lucene.apache.org/solr/

http://www-nlp.stanford.edu/software/
http://autosparql-tbsl.dl-learner.org/
https://vaadin.com
http://www.gwtproject.org
http://dbpedia.org/sparql
http://lucene.apache.org/solr/


4.2 Algorithm

We are investigating into several qualitative and quantitative improvements of
the TBSL algorithm.

Optimizing the URI Disambiguation It is crucial to find the right resource for
each slot because even a failure on a single one misrepresents the information
need of the query and produces answers which are useless to the user. As such
we strive to achieve an disambiguation rate that is as high as possible.

Multilingualism Natural language question answering aims to remove barriers
to the access of Semantic Web data by allowing lay users to query it in their
own language instead of a synthetic query language like SPARQL. Adding more
natural languages further increases the potential user base and facilitates querying
for users who can speak English but do not have it as a native language. At first
we plan to add the German language by creating German patterns and a German
domain-independent dictionary.

References

1. H. Cunningham D. Damljanovic, M. Agatonovic. Natural language interfaces to
ontologies: Combining syntactic analysis and ontology-based lookup through the user
interaction. In Proceedings of the 7th Extended Semantic Web Conference (ESWC
2010), Heraklion, Greece, May 31-June 3, 2010. Springer, 2010.

2. L. Fischer E. Kaufmann, A. Bernstein. NLP-Reduce: A ”naive” but domain-
independent natural language interface for querying ontologies. In Proceedings
of the 4th European Semantic Web Conference (ESWC 2007), Innsbruck, Austria,
2007.

3. J. Lehmann, C. Bizer, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-
mann. DBpedia – A crystallization point for the Web of Data. Journal of Web
Semantics, 7(3):154–165, 2009.

4. Jens Lehmann, Tim Furche, Giovanni Grasso, Axel-Cyrille Ngonga Ngomo, Christian
Schallhart, Andrew Sellers, Christina Unger, Lorenz Bühmann, Daniel Gerber,
Konrad Höffner, David Liu, and Sören Auer. Deqa: Deep web extraction for question
answering. In Proceedings of ISWC, 2012.

5. V. Lopez and E. Motta. Ontology driven question answering in AquaLog. In
Proceedings of the 9th International Conference on Applications of Natural Language
to Information Systems (NLDB 2004), Manchester, England, 2004.

6. Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-Cyrille Ngonga Ngomo,
Daniel Gerber, and Philipp Cimiano. Sparql template-based question answering. In
Proceedings of WWW, 2012.

7. E. Motta V. Lopez, V. Uren and M. Pasin. AquaLog: An ontology-driven question
answering system for organizational semantic intranets. Journal of Web Semantics,
5(2):72–105, 2007.

8. V. Uren V. Lopez, M. Sabou and E. Motta. Cross-ontology question answering on
the Semantic Web – an initial evaluation. In Proceedings of the Knowledge Capture
Conference, 2009, California, 2009.


	TBSL Question Answering System Demo

