
Test-driven Data Quality Evaluation for
SPARQL Endpoints

Dimitris Kontokostas1, Sören Auer1, Sebastian Hellmann1, Jens Lehmann1,
Patrick Westphal1, Roland Cornelissen2, and Amrapali Zaveri1

1 University of Leipzig, Institute of Computer Science, AKSW Group,
Augustusplatz 10, D-04009 Leipzig, Germany

{lastname}@informatik.uni-leipzig.de, http://aksw.org
2 Metamatter, Den Horn, Netherlands

roland@metamatter.nl, http://metamatter.nl

Abstract. Linked Open Data (LOD) comprises of an unprecedented
volume of structured data on the Web. However, these datasets are
of varying quality ranging from extensively curated datasets to crowd-
sourced or extracted data of often relatively low quality. In this paper we,
present a methodology for test-driven data quality assessment, which is
inspired by test-driven software development. We argue, that knowledge
bases should be accompanied by a number of test-cases, which help to
ensure a basic level of quality. We present a methodology for assessing
the quality of linked data resources, based on a formalization of bad
smells and data quality problems. Our formalization employs SPARQL
query templates, which are instantiated into concrete quality test queries.
Based on an extensive literature review, we compile a comprehensive li-
brary of quality test patterns. The main contribution of our work is an
extensive, unprecedented evaluation of DBpedia data quality employing
our test methodology. One of the main advantages of our approach is that
domain specific semantics can be encoded in the data quality test cases,
thus being able to discover data quality problems beyond conventional
quality heuristics.

Keywords: Data Quality, Linked Data, DBpedia

1 Introduction

Linked Open Data (LOD) comprises of an unprecedented volume of structured
data on the Web. However, these datasets are of varying quality ranging from ex-
tensively curated datasets to crowd-sourced and even extracted data of relatively
low quality. Data quality is not an absolute measure, but assesses fitness for use.
Consequently, one of the main challenges regarding the wider deployment and
use of semantic technologies on the Web is the assessment and ensuring of the
quality of a certain possibly, evolving dataset for a particular use case.

In this paper we, present a methodology for test-driven data quality as-
sessment, which is inspired by test-driven software development. Compared to

2 Kontokostas et al.

software source code testing, where test cases have to be implemented largely
manually or with limited programmatic support, the situation in knowledge base
testing on the Semantic Web is slightly more advantageous. On the Semantic
Web we have a unified data model, RDF, which is the basis for both, data and
ontologies. In this work we exploit the RDF data model by devising a pattern-
based approach for the data quality tests of RDF knowledge bases.

We argue, that knowledge bases should be accompanied by a number of test-
cases, which help to ensure a basic level of quality. We present a methodology for
assessing the quality of linked data resources, based on a formalization of bad
smells and data quality problems. Our formalization employs SPARQL query
templates, which are instantiated into concrete quality test queries. Based on
an extensive literature review, we compiled a comprehensive library of quality
tests. The main contribution of our work is the extensive evaluation of DBpedia
data quality employing our test methodology. Another main advantage of our
approach is, that domain specific semantics can be encoded in the data quality
test cases thus being able to discover data quality problems beyond conventional
quality heuristics. Further contributions are as follows:

– From our test cases, we generalized a pattern library which can be instanti-
ated for rapid development of more test cases.

– We list and discuss actual errors found in DBpedia. We also succeed in
quantifying these errors.

– We present a lightweight formalism for instantiating standard test cases.
– Our framework is easily re-usable for other knowledge bases and triple store

implementations as we built upon the SPARQL 1.1 standard.

The paper is structured as follows: Section 2 describes the three-step method-
ology we followed to define Data Quality Patterns. While the creation of our
initial pattern library is described in Section 3, the resulting Pattern Library is
elaborated in Section 4. We instantiate, run and evaluate the tests in Section 5,
followed by a discussion in Section 6. Section 7 elaborates on related work and
we conclude in Section 8.

2 Test-driven Data Quality Methodology

Our methodology (cf. Figure 1) consists of the following major steps:

1. Definition of data quality test patterns. Those define abstract classes of po-
tential data quality problems, which we collected in a library in the subse-
quent section. These patterns were generalized from incidental reports about
data quality problems (cf. Section 4 for details).

2. Instantiation of data quality test patterns. Abstract test patterns are instan-
tiated for concrete vocabularies and knowledge bases with bindings.

3. Execution of the resulting data quality test cases. The test results serve as in-
put for a data quality improvement activity. The tests can be run repeatedly
to verify the effectiveness and assist in data debugging.

The first crucial step is the definition of a data quality test pattern (DQTP).

Test-driven Data Quality Evaluation for SPARQL Endpoints 3

Fig. 1. Flowchart showing the test-driven data quality methodology (middle part).
The top serves as input for the methodology, the right part displays concrete leverage
points for improvements in the DBpedia use case.

Definition 1 (Data Quality Test Pattern). A data quality test pattern is a
tuple (V, S), where V is a set of typed variables, S is a SPARQL query template
with placeholders for the variables from V . Possible types of the variables are
IRIs, literals, operators, datatype values (e.g. integers) and regular expressions.
With R(v) we denote the value range for a variable in v ∈ V and with R(V) the
union of all these sets, i.e. R(V) =

⋃
v∈V R(v).

DQPTs are knowledge base and vocabulary agnostic. An example DQTP is:

1 SELECT ?s WHERE { ?s %%P1%% ?v1 .
2 ?s %%P2%% ?v2 .
3 FILTER (?v1 %%OP%% ?v2) }

This DQTP can be used for testing whether a value comparison of two proper-
ties P1 and P2 holds with respect to an operator OP . DQTPs represent abstract
patterns, which can be further refined into concrete data quality test cases using
test pattern bindings.

Definition 2 (Test Pattern Binding). A test pattern binding for a data qual-
ity test pattern (V, S,C) is a mapping from V to the set of value ranges for the
variables in V , i.e. V → R(V), where each v ∈ V is mapped to a suitable element
of its value range R(v). In addition, each test pattern binding has an associated
data quality issue type C ∈ {error, bad smell}.

Definition 3 (Data Quality Test Cases). A data quality test case is the
result of the application of a test pattern binding to a DQTP.

An example test pattern binding and resulting data quality test case is3:

3 We use http://prefix.cc to resolve all name spaces and prefixes. A full list can be
downloaded here http://prefix.cc/popular/all

http://prefix.cc
http://prefix.cc/popular/all

4 Kontokostas et al.

1 P1 => dbo:birthDate | SELECT ?s WHERE { ?s dbo:birthDate ?v1 .
2 P2 => dbo:deathDate | ?s dbo:deathDate ?v2 .
3 OP => > | FILTER (?v1 > ?v2) }

3 Pattern Elicitation and Creation

We performed three different analyses for elicitation of a comprehensive library
of test patterns summarized in Table 1:
1. Analysis of incidental error reports by the DBpedia user community.
2. Analysis of error tracking behavior by Wikipedia editors.
3. Analysis of the ontology schema of the DBpedia OWL ontology.

Community feedback. We thoroughly reviewed all the DBpedia related mailing
lists and QA websites, that is DBpedia discussion4 and DBpedia developers5 lists,
as well as questions tagged with DBpedia on stackoverflow6 and Semantic Web
Answers7. We picked all the data quality related questions and tried to create
SPARQL queries for retrieving the same erroneous data. Finally, we grouped
similar SPARQL queries together.

Wikipedia maintenance categories. The maintenance of the immense amount
of content in Wikipedia poses a severe challenge to the core of the Wikipedia
editors. Seasoned Wikipedians (e.g. admins and stewards) therefore use special
Categories and Templates for administrating and tagging errors in the article
space8. We analyzed these categories and created patterns to assign errors auto-
matically to capture them in our assessment. Although all Wikipedia categories
were extracted with the DBpedia extraction framework, all templates were not.
Thus, we developed a new DBpedia extractor that extracts all templates used
inside an article and loaded the template data into the main DBpedia endpoint.
Our TRIPLE Pattern can now recreate most of the Wikipedia maintenance
pages. In addition, we used the PVT Pattern (see binding example c) to sim-
ulate and automatize some of the maintenance tags. Very often much manual
work is required to assign these tags.

OWL ontology analysis. The main purpose of OWL is to infer knowledge from
existing schemata and data. While it can also be used to check constraints, this
can be difficult in practice due to the Open World Assumption used and the lack
of the Unique Name Assumption. Therefore, in addition to standard OWL infer-
ence, it can also be useful to convert OWL ontology axioms to SPARQL queries,
which check the constraints expressed by them. This is motivated by research on

4
https://lists.sourceforge.net/lists/listinfo/dbpedia-discussion

5
https://lists.sourceforge.net/lists/listinfo/dbpedia-developers

6
http://stackoverflow.com/questions/tagged/dbpedia

7
http://answers.semanticweb.com/tags/dbpedia/

8
http://en.wikipedia.org/wiki/Category:Wikipedia_maintenance

https://lists.sourceforge.net/lists/listinfo/dbpedia-discussion
https://lists.sourceforge.net/lists/listinfo/dbpedia-developers
http://stackoverflow.com/questions/tagged/dbpedia
http://answers.semanticweb.com/tags/dbpedia/
http://en.wikipedia.org/wiki/Category:Wikipedia_maintenance

Test-driven Data Quality Evaluation for SPARQL Endpoints 5

the Pellet Integrity Constraint Validator9 using the same idea. Specifically, we
analysed the ontology and checked which existing constructs are applicable for
constraint checking in DBpedia. We identified (inverse) functionality, cardinal-
ity, domain, and range of properties as well as class disjointness as relevant and
included them in our pattern template library. The bindings for those patterns
can be created automatically from specific OWL ontology axioms.

4 Pattern Library

Our Pattern Library consists of 14 patterns. Table 1 shows a description of all
patterns along with two example bindings. In the following, we describe each
pattern in detail.

COMP Pattern: Depending on the property semantics, there are cases where two
different literal values must have a specific ordering with respect to an operator.
P1 and P2 are the datatype properties we need to compare and OP is the
comparison operator R(OP) = { <, <=, >, >=, =, != }

1 SELECT ?s WHERE { ?s %%P1%% ?v1 .
2 ?s %%P2%% ?v2 .
3 FILTER (?v1 %%OP%% ?v2) }

Example bindings: (a) dbo:deathDate before ‘<’ dbo:birthDate, (b)
dbo:releaseDate after ‘>’ dbo:latestReleaseDate (c) dbo:demolitionDate

before ‘<’ dbo:buildingStartDate

MATCH Pattern: Application logic or real world constraints may put restric-
tions on the form of a literal value. P1 is the property we need to check against
REGEX and NOP can be a not operator (‘!’) or empty.

1 SELECT ?s WHERE { ?s %%P1%% ?value .
2 FILTER (%%NOP%% regex(str(? value), %%REGEX%)) }

Example bindings: (a) dbo:isbn format is different ’ !’ from
“ˆ([iIsSbBnN 0-9-])*$” (b) dbo:postCode format is different ‘!’ from
“ˆ[0-9]{5}$”, (c) resources having a yago type (rdf:type) with more than one
consecutive capital letters (“ˆhttp://dbpedia.org/class/yago/.*[a-z][A-Z][A-
Z].*$”).

LITRAN Pattern: Application logic or real world facts may put restrictions on
the range of a literal value depending on the type of a resource. P1 is a property
of an instance of class T1 and its literal value must be between the range of
[Vmin,Vmax] or outside (NOP can be a ‘!’). The query is phrased so that
”between” does not require negation, but ”outside” does.

9
http://clarkparsia.com/pellet/icv/

http://clarkparsia.com/pellet/icv/

6 Kontokostas et al.

Template Binding example Src

COMP: Comparison between
two literal values of a resource

a. dbo:deathDate after dbo:birthDate CF

b. dbo:releaseDate after dbo:latestReleaseDate CF

MATCH: Literal matches a
pattern

a. wrong dbo:isbn number CF

b. wrong dbo:postcode format CF

LITRAN: Literal in specific
range

a. height of a dbo:Person in [0.4,2.5] CF

b. geographic latitude in [-90,90] (WGS 84) CF

CARD: Cardinality restriction
on property

a. dbo:birthDate is a functional property DO

b. there should not be more than 20
rdfs:label in dbpedia.org

CF

TYPEDEP: Type dependency
(resource is of type t1 and not
of type t2)

a. has coordinates (gml: Feature) but is not a
dbo:Place

CF

b. is a yago:GeoclassCapitalOfAPoliticalEntity but
not a dbo:Place

CF

PROPDEP: Resource has
property p1 but not property
p2

a. has dbo:deathDate but not dbo:birthDate CF

b. has dbpprop:dateOfBirth but not
dbo:birthDate

CF

PDOMAIN: Resource has
property p1 but is not of type
t1

a. resource cannot have a foaf:name property
if it is not an owl:Thing

CF

b. has the “Cities of Africa” category but does
not have the type dbo:City

CF

PRANGE: Object of a triple
is not of type t1

a. a dbo:Person’s spouse must be a dbo:Person DO

b. dbo:birthPlace of a dbo:Person must be a
dbo:Place

DO

TYPRODEP: Resource of
type t1 should contain
property p1

a. a dbo:Place should have coordinates CF

b. a dbo:Person should have a dbo:birthDate CF

PVT: Resources with a
property p1 having value v1
should contain a triple with
property p2

a. articles with a Geographic location template
should extract coordinates

CF

b. resources in the category of “1907 births”
should have a dbo:birthdate

W

TRIPLE: Resource has value
v1 for property p1

a. Wikipedia articles that are possibly copy-
pasted

W

b. Wikipedia articles with inconsistent citation
format

W

INVFUNC: Unique value
constraint

a. two resources with the same foaf:homepage DO

b. two countries with the same capital DO

DISJOIN: Disjoint class
constraint

a. a dbo:Person is disjoint with dbo:Place DO

b. dbo:Person is disjoint with dbo:Work DO

ONELANG: One literal for a
language constraint

a. a single English foaf:name CF

b. a single English rdfs:label CF

Table 1. Example templates and bindings. The column Src contains the source where
the corresponding pattern is derived from, i.e. if it is created due to community feed-
back (CF), utilizing Wikipedia maintenance categories (W) or analyzing the ontology
schema of the DBpedia OWL ontology (DO) as described in Section 3

Test-driven Data Quality Evaluation for SPARQL Endpoints 7

1 SELECT ?s WHERE { ?s rdf:type %%T1%% .
2 ?s %%P1%% ?value .
3 FILTER(%%NOP%% (?value < %%Vmin%% ||
4 ?value > %%Vmax %%))) }

Example bindings: (a) a dbo:Person should have dbo:height between 0.4 and
2.5 meters, (b) the geo:lat of a gml: Feature must be in range [-90,90], (c) the
geo:long of a gml: Feature must be in range [-180,180]

CARD Pattern: Using this pattern, we can test for cardinal constraints on spe-
cific properties. P1 is the property we need to compare with V1 and OP is the
comparison operator (<, <=, >, >=, =, !=)

1 SELECT ?s WHERE { ?s %%P1%% ?c } GROUP BY ?s HAVING count(?c) %%OP%% %%V1%%

Example bindings: (a) every property defined as owl:FunctionalProperty (e.g.
dbo:birthDate, dbo:latestReleaseDate) in the ontology cannot exist more
than once (>1), (b) DBpedia.org’s resources have an rdfs:label for each of its
20 different languages. Therefore each resource should not have more than 20
labels (>20), the same holds for other properties such as rdfs:comment.

TYPEDEP Pattern: The type of a resource may imply the attribution of a
second type. In this pattern T1 and T2 are the types tested for coexistence.

1 SELECT distinct ?s WHERE { ?s rdf:type %%T1%% .
2 FILTER NOT EXISTS { ?s rdf:type %%T2%% } }

Example bindings: (a) gml: Feature should imply dbo:Place,
(b) yago:GeoclassCapitalOfAPoliticalEntity should imply dbo:Place, (c)
foaf:Person should imply dbo:Person.

PROPDEP Pattern: Certain properties imply the attribution of a second prop-
erty. In this pattern P1 and P2 are the properties tested for coexistence.

1 SELECT ?s WHERE { ?s %%P1%% ?v1 .
2 FILTER NOT EXISTS { ?s %%P2%% ?v2 } }

Example bindings: A resource with property (a) dbo:deathDate should
have a property dbo:birthDate, (b) dbp:dateOfBirth should have a prop-
erty dbo:birthDate, (c) dbo:activeYearsStartDate should have a property
dbo:activeYearsEndDate.

PDOMAIN Pattern: The attribution of a property is only valid when the class
is in the domain of the property. In this pattern the property P1 is tested for
coexistence of the type T1. Optionally value V1 can be specified to narrow the
test to the specified value for P1.

1 SELECT distinct ?s WHERE { ?s %%P1%% %%V1%% .
2 FILTER NOT EXISTS { ?s rdf:type %%T1%% } }

8 Kontokostas et al.

Example bindings: (a) foaf:name should have type owl:Thing attributed, (b)
dc:subject dbc:CapitalsInAfrica should have type dbo:Place attributed,
(c) dbo:dissolved should have type dbo:SoccerClub attributed.

PRANGE Pattern: The object of a triple must be within the range of the prop-
erty. In this pattern property P1 and type T1 are tested for coexistence.

1 SELECT ?c WHERE { ?s %%P1%% ?c .
2 FILTER NOT EXISTS { ?c rdf:type %%T1%% } }

Example bindings: (a) the dbo:spouse of a dbo:Person must be a dbo:Person,
(b) the dbo:birthPlace of a dbo:Person must be a dbo:Place, (c) the
dbo:dean of a dbo:EducationalInstitution must be a dbo:Person.

TYPRODEP Pattern: Resources of a given type sometimes must be accompa-
nied by a specified property. In this pattern the type T1 is tested for coexistence
with property P1.

1 SELECT * WHERE { ?s rdf:type %%T1%% .
2 FILTER NOT EXISTS { ?s %%P1%% ?v } }

Example bindings: Resources representing (a) a dbo:Place should have a
geo:lat property. (b) a dbo:Person should have a dbo:birthDate property,
(c) a dbo:Person should have a foaf:depiction property,

PVT Pattern: If a resource has a certain value V assigned via a property P1
that in some way classifies this resource, one can assume the existence of other
properties P2. This pattern is a generalization of the PROPDEP Pattern.

1 SELECT ?s WHERE { ?s %%P1%% %%V1%%
2 FILTER NOT EXISTS { ?s %%P2%% ?p } }

Example bindings: resources (a) being extracted from a
dpt:Template:Geographic location should have a geo coordinate as-
signed (dbo:georss:point), (b) belonging to the category dbc:1907 births

should have a dbo:birthDate, (c) belonging to a Wikipedia category for
maintenance, because they are using a template (dbp:wikiPageUsesTemplate
dbt:Infobox character), but have unlabeled fields (i.e. missing properties
such as dbpprop:first)10

TRIPLE Pattern: In some cases hints with regards to errors or bad smells are
already contained in the dataset. These are given as certain property P1 value
V1 combinations and can be tested with the following pattern.

1 SELECT ?s WHERE { ?s %%P1%% %%V1%% }

10 http://en.wikipedia.org/wiki/Category:Articles_using_Infobox_character_

with_multiple_unlabeled_fields

http://en.wikipedia.org/wiki/Category:Articles_using_Infobox_character_with_multiple_unlabeled_fields
http://en.wikipedia.org/wiki/Category:Articles_using_Infobox_character_with_multiple_unlabeled_fields

Test-driven Data Quality Evaluation for SPARQL Endpoints 9

Example bindings: Resources extracted from Wikipedia articles, that (a) were
possibly copy-pasted (dc:subject dbc:Possible cut-and-paste moves),
(b) have an inconsistent citation format (dbp:wikiPageUsesTemplate
dbt:Inconsistent citations), (c) have missing files (dc:subject
dbc:Articles with missing files).

INVFUNC Pattern: Some values assigned to a resource are considered to be
unique for this particular resource and should not occur in connection with
other resources. See Section 6 for comments.

1 SELECT distinct ?s WHERE{ ?a %%P1%% ?v1 . # ?a %%P2%% %%V1%% .
2 ?b %%P1%% ?v2 . # ?b %%P2%% %%V1%% .
3 FILTER ((str(?v1) == str(?v2)) && (?a != ?b)) }

Example bindings: (a) Two different resources should not have the same
foaf:homepage (P1, P2), or (b) two countries the same dbo:capital.

DISJOIN Pattern: A resource must not belong to two disjoint classes. T1 and
T2 are the two disjoint classes we check.

1 SELECT ?s WHERE { ?s rdf:type %%T1%% .
2 ?s rdf:type %%T2%% . }

Example bindings: (a) dbo:Person is owl:disjointWith with dbo:Place, (b)
dbo:Person is owl:disjointWith with dbo:Work,

ONELANG Pattern: A literal value should contain at most 1 literal for a lan-
guage. P1 is the property containing the literal and V1 is the language we want
to check.

1 SELECT ?s WHERE { ?s %%P1%% ?c
2 BIND (lang(?c) AS ?l)
3 FILTER (isLiteral (?c) && lang(?c) = %%V1%%) }
4 GROUP BY ?s HAVING COUNT (?l) > 1

Example bindings: (a) a single English (“en”) foaf:name, (b) a single English
(“en”) rdfs:label.

5 DBpedia Data Quality Evaluation11

Recent developments in DBpedia internationalization [8] resulted in the cre-
ation of new DBpedia language chapters. DBpedia chapters extract data from
a respective Wikipedia language edition and load the extracted data on a sepa-
rate domain (e.g. http://nl.dbpedia.org for Dutch). Although every chapter
uses its own namespace for resources (e.g. http://nl.dbpedia.org/resource/)
all chapters use the same DBpedia ontology. This facilitates cross-DBpedia

11 To reproduce the evaluation, we published all scripts, queries and data used to
generate the tables and images on https://github.com/AKSW/Databugger.

http://nl.dbpedia.org
http://nl.dbpedia.org/resource/
https://github.com/AKSW/Databugger

10 Kontokostas et al.

Language Triples Subjects Errors Error rate

Czech 20,585,673 379,311 40,187 13.96%

Dutch 59,049,164 1,496,453 261,455 8.90%

Dutch (L) 56,762,114 1,465,212 366,893 8.08%

English 329,267,934 9,426,357 3,598,765 19.19%

English (L) 282,656,622 9,833,222 2,686,854 17.38%

French 92,932,838 2,455,021 476,985 13.06%

German 95,320,757 2,378,952 1,111,239 10.97%

Greek 6,747,265 107,333 28,699 17.23%

Japanese 46,358,390 858,529 180,945 16.91%

Spanish 83,909,360 2,215,745 474,566 17.77%

Total 9,226,588 14.35%
Table 2. Evaluation summary for all DBpedia language editions. Triples refers to total
number of triples in the triple store and Subjects to unique DBpedia resources. Errors
are the total errors encountered and Error Rate the average error rate for all DQTC.

SPARQL query interoperability. A complete list of all the available DBpedia
language chapters can be found on the DBpedia website12, however, not all
chapters provide a high level of online availability. For this evaluation we used
the Czech, Dutch, English, French, German, Greek and Japanese DBpedia lan-
guage chapters along with two DBpedia Live editions [12]: the English and the
Dutch. 13.

To evaluate our methodology all the instantiated bindings (cf. Table 1) were
executed against the SPARQL endpoints of all aforementioned DBpedia lan-
guage chapters. Most of the bindings are based on the DBpedia ontology or
common vocabularies and thus, can be run on all endpoints. However, not all
endpoints are as complete as the English one (i.e. mappings of local properties to
the DBpedia ontology are incomplete) which lowers the number of candidate er-
rors on non-English endpoints. Moreover, bindings PROPDEP-c, PDOMAIN-b
and all bindings of the TRIPLE pattern are specific to the English DBpedia.

Table 2 provides an evaluation summary for all endpoints. The first two
columns (Triple Count and Unique Subjects) give an estimate of the size of the
evaluated DBpedia language edition. Total Errors is the sum of the result of all
Data Quality Test Cases (DQTC) and Average Error Rate is the average error
rate of all DQTCs for a language. Also note that these results contain all the
instantiated DQTCs and not only the first two as in Table 3. The execution time
of all DQTC on all endpoints was 72 minutes.

A depiction of four high error rate DQTCs is available in Figure 2. Images
(a), (b) and (c) depict the absolute errors, the prevalence and the error rate for
MATCH-a, TYPEDEP-a, PRANGE-b and TYPRODEP-a respectively. More-
over, image (d) depicts the total execution time separately for each endpoint.

12
http://wiki.dbpedia.org/Internationalization/Chapters

13 In order of appearance: http://cz.dbpedia.org, http://nl.dbpedia.org, http://dbpedia.org,
http://fr.dbpedia.org, http://de.dbpedia.org, http://el.dbpedia.org, http://ja.dbpedia.org,
http://live.dbpedia.org, http://live.nl.dbpedia.org

http://wiki.dbpedia.org/Internationalization/Chapters
http://cz.dbpedia.org
http://nl.dbpedia.org
http://dbpedia.org
http://fr.dbpedia.org
http://de.dbpedia.org
http://el.dbpedia.org
http://ja.dbpedia.org
http://live.dbpedia.org
http://live.nl.dbpedia.org

Test-driven Data Quality Evaluation for SPARQL Endpoints 11

Fig. 2. Histograms of four high error rate DQTCs: (a), (b) and (c) depict the absolute
errors, the prevalence and the error rate for MATCH-a, TYPEDEP-a, PRANGE-b and
TYPRODEP-a respectively; (d) depicts the total execution time for each endpoint.

Finally, in accordance with the bindings of Table 1, we present a complete
evaluation of the the English DBpedia and English DBpedia Live in Table 3.
Prevalence is calculated by inserting the bindings in an a related companion
template for prevalence. For the TRIPLE patterns, the DQTCs are SPARQL
queries with a single triple pattern and thus prevalence cannot be calculated.
Furthermore, TRIPLE-b dependes on the new Template extractor (cf. Section 3)
that was not loaded on the endpoints at the time of the evaluation.

6 Discussion

One of the most surprising fact was, that we could actually find one of the
largest error with the PDOMAIN Pattern. Missing explicated domain types for
resources were very frequent among incident reports by the community. Writing
inferred domain types into the triple store happens in several different places in
the extraction software and is very hard to track, so that this error class was only
partially fixed in an unsystematic way and then re-occurred again in consecutive
DBpedia versions. Our approach helps to ensure sustainable improvement of
DBpedia, as it allows to discover re-occurring errors automatically without a

12 Kontokostas et al.

Binding
DBpedia English DBpedia English Live

Error Prevalence Error rate Error Prevalence Error rate
CARD-a 390,661 610,202 64.02% 0 809,799 0.00%

CARD-b 5,009 23,891,055 0.02% 0 10,889,643 0.00%

COMP-a 757 226,024 0.33% 359 410,279 0.09%

COMP-b 2 118 1.69% 10 204 4.90%

DISJOIN-a 86 24,424,883 0.00% 47 14,654,413 0.00%

DISJOIN-b 0 24,424,883 0.00% 41 14,654,412 0.00%

INVFUNC-a 68,034 578,169 11.76% 86,025 545,445 15.77%

INVFUNC-b 1,530 3,886 39.37% 931 1,961 47.47%

LITRAN-a 85 44,267 0.19% 4,988 56,475 8.83%

LITRAN-b 0 758,316 0.00% 0 841,913 0.00%

MATCH-a 7,553 28,256 26.73% 6,975 20,470 34.07%

MATCH-b 63,224 156,190 40.48% 66,962 165,681 40.42%

ONELANG-a 0 2,576,741 0.00% 0 2,536,228 0.00%

ONELANG-a 0 24,841,480 0.00% 0 10,889,644 0.00%

PDOMAIN-a 502,623 2,267,864 22.16% 512,384 2,203,975 23.25%

PDOMAIN-b 45 63 71.43% 44 62 70.97%

PRANGE-a 6,898 20,124 34.28% 11,172 21975 50.84%

PRANGE-b 68,671 768,759 8.93% 241,935 799,160 30.27%

PROPDEP-a 54,195 255,465 21.21% 40,364 328,829 12.28%

PROPDEP-b 241,556 829,941 29.11% 247,471 1,046,851 23.64%

PVT-a 4,437 12,824 34.60% 539 5,885 9.16%

PVT-b 1,055 3,735 28.25% 1,189 3,813 31.18%

TRIPLE-a 1,804 - 0.00% 1,808 - 0.00%

TRIPLE-b 0 - 0.00% 0 - 0.00%

TYPDEP-a 261,173 813,153 32.12% 303,782 776,049 39.14%

TYPDEP-b 16 150 10.67% 0 0 0.00%

TYPRODEP-a 101,677 642,632 15.82% 101,243 597,832 16.94%

TYPRODEP-b 392,515 763,644 51.40% 188,760 572,398 32.98%
Table 3. Detailed statistics for all DQTCs executed in English DBpedia and English
DBpedia Live.

resource-intensive community reporting loop. Having owl:Thing (PDOMAIN-a)
manifested in the triple store seems trivial, but is a requirement (e.g. for OWL-
DL) of quite a few tools in the SW tool chain and can easily break existing
applications. A DBpedia developer familiar with the software is easily able to
quickly spot the error source based on the property binding (e.g. foaf:name in
this case).

Revision of instantiated patterns. Although our pattern library already
covers a wide range of data quality errors in DBpedia, there are cases where the
mere instantiation of patterns is not sufficient. Binding COMP-a (cf. Table 1),
for example, returns 757 results in the English DBpedia. Some of these results
have, however, incomplete dates (i.e. just xsd:gMonthDay). Technically, these
results are outside of the scope of the binding and the pattern and thus, a false
positive. An improvement of this particular test case might look like:

Test-driven Data Quality Evaluation for SPARQL Endpoints 13

1 SELECT COUNT (*) WHERE { ?s dbo:birthDate ?v1 .
2 ?s dbo:deathDate ?v2 .
3 FILTER (?v1 >?v2 && datatype (?v1)!=xsd:gMonthDay
4 && datatype (?v2)!=xsd:gMonthDay) }

Another similar case is MATCH-c, where YAGO types contained spelling errors
in resources (two consecutive capital letters). The false positives in this case are
e.g. resources containing the substring “BC”(as in before Christ). We reduced
the number of false positives by searching YAGO types for ’BC’ and creating
a white list, which we included in the test case. Based on this, we included the
extra false-positive-reduction loop for expert users at the bottom of Figure 1.

The INVFUNC Pattern was originally brought up by a community
member who reported duplicate dbo:capital usages. As a consequence, we
initially created the template as a straightforward conversion of the seman-
tics of owl:InverseFunctionalProperty, but reinterpreted with SPARQL and
the Unique Name Assumption. As we started to run the tests, however, only
false positives where returned for foaf:homepage and dbo:capital, e.g. Can-
berra is the capital of Australia and the Australian Capital Territory and
http://www.eurovision.tv/ is the homepage for each yearly edition of the
Eurovision Song Contest as well as of its abstract entity. A direct mapping from
OWL was therefore not useful and we will in the future restrict the pattern to a
single facet by adding: ?a %%P1%% %%V1%% . ?b %%P1%% %%V1%% . Our
conclusion is that owl:InverseFunctionalProperty should only be assigned, if
the meaning of the property has a very specific domain.

While axioms in an OWL scheme are intended to be applicable in a global
context, our test-driven methodology clearly depends on local requirements.
Data constraints, for example, can be very application specific and are not uni-
versally valid. For instance, due to the vast size of DBpedia, it is unrealistic to
expect data completeness, e.g. that every dbo:Person has a foaf:depiction

and a dbo:birthDate (TYPRODEP pattern). However, in the context of an
application like “A day like today in history”14 these properties are expected, as
they lead to a failure. Thus, the definition of an error or a bad smell is subjective
to the binding creator’s requirements.

7 Related Work

Previous Data Quality Measurements on DBpedia. An earlier publication
[1] concerning the data quality of extracted RDF triples mainly concentrates
on the data source, the Wikipedia. Errors in the RDF data are attributed to
several shortcomings in the authoring process, e.g. the usage of tables instead
of templates, the encoding of layout information like color in templates and so
on. Other inaccuracies occur due to an imprecise use of the wiki markup or
when duplicate information is given, as in height = 5’11” (180cm). To avoid
those errors the authors provide some authoring guidelines in accordance with
guidelines created by the Wikipedia community.

14 http://el.dbpedia.org/apps/DayLikeToday/

http://www.eurovision.tv/
http://el.dbpedia.org/apps/DayLikeToday/

14 Kontokostas et al.

In [10] the authors concentrate more on the extraction process, comparing the
Generic with the Mapping-based Infobox Extraction approach. It is shown that
by mapping Wikipedia templates to a manually created, simple ontology, one can
obtain a far better data quality, eliminating data type errors as well as a better
linkage between entities of the dataset. Other errors concern class hierarchies
e.g. omissions in the automatically created YAGO classification schema.

Another issue already addressed in the future work section of [10] is the fusion
of cross-language knowledge of the language specific DBpedia instances. This
topic as well as other internationalization issues are treated in [8]. There, different
extraction problems of the Greek DBpedia are presented that can also be applied
to other languages, especially those using non-Latin characters. These are e.g. the
use of special templates, URI and IRI encoding and the cross-language linkage of
DBpedia resources. The authors’ approach to counter these issues and increase
the data quality is to expand the extraction framework and introduce language-
specific i18n filters.

Another study aimed to develop a framework for the DBpedia quality as-
sessment is presented in [9]. In this study, particular problems of the DBpedia
extraction framework were taken into account and integrated in the framework.
However, only a small sample (75 resources) was assessed in this case and an
older DBpedia version (2010) was analyzed.

General Data Quality Assessment. There exist several approaches to-
wards developing frameworks in order to assess the data quality of LOD. We only
give a brief overview here and refer to [15] for details. These frameworks can be
broadly classified into (i) automated (e.g. [5]), (ii) semi-automated (e.g. [4]) or
(iii) manual (e.g. [2,11]) methodologies. These approaches are useful at the pro-
cess level wherein they introduce systematic methodologies to assess the quality
of a dataset. However, the drawbacks include considerable amount of user in-
volvement, inability to produce interpretable results, or not allowing a user the
freedom to choose the input dataset. In our case, we focused on a very lightweight
framework and the development of a library based on real user input.

Additionally, there have been efforts to assess the quality of Web Data [3]
on the whole, which included the analysis of 14.1 billion HTML tables from
Google’s general-purpose web crawl in order to retrieve tables with high-quality
relations. In a similar vein, in [6], the quality of RDF data was assessed. This
study detected the errors occurring while publishing RDF data along with the
effects and means to improve the quality of structured data on the web. In a
recent study, 4 million RDF/XML documents were analyzed which provided
insights into the level of conformance these documents had in accordance to
the Linked Data guidelines. On the one hand, these efforts contributed towards
assessing a vast amount of Web or RDF/XML data, however, most of the analysis
was performed automatically, therefore overlooking the problems arising due to
contextual discrepancies. In previous work, we used similar ideas for describing
the evolution of knowledge bases [13].

Rules and SPARQL. SPARQL Inferencing Notation (SPIN) [7] is W3C
submission aiming at representing rules and constraints on Semantic Web mod-

Test-driven Data Quality Evaluation for SPARQL Endpoints 15

els. SPIN also allows users to define SPARQL functions and reuse SPARQL
queries. The difference between SPIN and our pattern syntax, is that SPIN
functions would not fully support our our Pattern Bindings. SPIN function ar-
guments must have specific constraints on the argument datatype or argument
class and do not support operators (e.g. ‘=’, ‘>’, ‘!’). Four of our templates
above cannot be directly represented in SPIN. However, our approach is still
compatible with SPIN when allowing to initialise templates with specific sets of
applicable operators. In that case, however, the number of templates increases.
One of the advantages of converting our templates to SPIN is that they can
be stored directly in RDF. However, a disadvantage is that SPIN is more com-
plex than the lightweight framework proposed by us. From the efforts related to
SPIN, we re-used the data quality pattern library as well as the ontologies.

Another related approach is the Pellet Integrity Constraint Validator
(ICV)15. Pellet ICV [14] translates OWL integrity constraints into SPARQL
queries. Similar to our approach, the execution of those SPARQL queries in-
dicates violations. An implication of this, is that the unique names assumption
and a closed world assumption is in effect. The difference to our approach is that
Pellet ICV directly works on OWL files without an explicit representation of con-
straints and the translation happens behind the scenes. In this sense, an OWL
representation could be seen as a different representation mechanism for which
the end result after employing Pellet ICV is similar to the template bindings in
our approach. A difference is, of course, that there is no pre-defined template
mechanism comparable to our library above in OWL.

Schemarama16 is a very early (2001) constraint validation approach based
on using the Squish RDF language instead of SPARQL. It does not offer a
templating mechanism or a classification of data quality problem.

For XML, Schematron17 is an ISO standard for validation and quality control
of XML documents based on XPath and XSLT. We argue that similar adapted
mechanisms for RDF are of crucial importance to provide solutions allowing the
usage of RDF in settings, which require either high quality data or at least an
accurate assessment of its quality.

8 Conclusions and Future Work

In this paper we described a novel approach for improving Linked Data quality.
The approach is inspired by test-driven software engineering and is centered
around the definition of data quality integrity constraints, which are represented
in SPARQL query templates. We compiled a comprehensive set of generic Data
Quality Test Patterns (DQTP), which we instantiated for extensive testing of
DBpedia data quality. Our evaluation on a number of language specific DBpedia
endpoints showed, that DQTPs are able to reveal a substantial amount of data
quality issues in an effective and efficient way.

15
http://clarkparsia.com/pellet/icv/

16
http://swordfish.rdfweb.org/discovery/2001/01/schemarama/

17
http://www.schematron.com/

http://clarkparsia.com/pellet/icv/
http://swordfish.rdfweb.org/discovery/2001/01/schemarama/
http://www.schematron.com/

16 Kontokostas et al.

We see this work as the first step in a larger research and development agenda
to position test-driven data engineering similar to test-driven software engineer-
ing. In future work we aim to tackle automatic repair strategies, i.e. how can
templates and bindings be used to actually fix problems. We also plan to imple-
ment a test-driven data quality cockpit, which allows users to easily instantiate
and run DQTPs based on custom knowledge bases. As a result, we hope that
test-driven data quality can contribute to solve on of the most pressing problems
of the Data Web – the improvement of data quality and the increase of Linked
Data fitness for use.

Acknowledgment

We would like to thank the active members of the DBpedia community and in
particular the chapter activists, without whom this work would not have been
possible. This work was supported by a grant from the European Union’s 7th
Framework Programme provided for the project LOD2 (GA no. 257943).

References

1. S. Auer and J. Lehmann. What have Innsbruck and Leipzig in common? extracting
semantics from wiki content. In ESWC, volume 4519 of LNCS, pages 503–517.
Springer, 2007.

2. C. Bizer and R. Cyganiak. Quality-driven information filtering using the WIQA
policy framework. Web Semantics, 7(1):1 – 10, Jan 2009.

3. M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. Webtables:
exploring the power of tables on the web. PVLDB, 1(1):538–549, 2008.

4. A. Flemming. Quality characteristics of linked data publishing datasources. Mas-
ter’s thesis, Humboldt-Universität of Berlin, 2010.

5. C. Guéret, P. T. Groth, C. Stadler, and J. Lehmann. Assessing linked data map-
pings using network measures. In ESWC, volume 7295 of LNCS, pages 87–102.
Springer, 2012.

6. A. Hogan, A. Harth, A. Passant, S. Decker, and A. Polleres. Weaving the pedantic
web. In LDOW, 2010.

7. H. Knublauch, J. A. Hendler, and K. Idehen. Spin - overview and motivation.
W3C Member Submission, W3C, February 2011.

8. D. Kontokostas, C. Bratsas, S. Auer, S. Hellmann, I. Antoniou, and G. Metakides.
Internationalization of linked data: The case of the greek dbpedia edition. JWS,
15(0):51 – 61, 2012.

9. P. Kreis. Design of a quality assessment framework for the dbpedia knowledge
base. Master’s thesis, Freie Universität Berlin, 2011.

10. J. Lehmann, C. Bizer, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-
mann. DBpedia - a crystallization point for the web of data. JWS, 7(3):154–165,
2009.

11. B. C. Mendes P.N., Mühleisen H. Sieve: Linked data quality assessment and fusion.
In LWDM, 2012.

12. M. Morsey, J. Lehmann, S. Auer, C. Stadler, and S. Hellmann. DBpedia and the
Live Extraction of Structured Data from Wikipedia. Program: electronic library
and information systems, 46:27, 2012.

Test-driven Data Quality Evaluation for SPARQL Endpoints 17

13. C. Rieß, N. Heino, S. Tramp, and S. Auer. EvoPat – Pattern-Based Evolution and
Refactoring of RDF Knowledge Bases. In ISWC2010, LNCS. Springer, 2010.

14. E. Sirin and J. Tao. Towards integrity constraints in owl. In Proceedings of the
Workshop on OWL: Experiences and Directions, OWLED, 2009.

15. A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, and S. Auer. Quality
assessment methodologies for Linked Open Data. Submitted to SWJ.

	Test-driven Data Quality Evaluation for SPARQL Endpoints
	Introduction
	Test-driven Data Quality Methodology
	Pattern Elicitation and Creation
	Pattern Library
	title
	Discussion
	Related Work
	Conclusions and Future Work

