
Improving the Performance of the DL-Learner
SPARQL Component for Semantic Web

Applications

Didier Cherix, Sebastian Hellmann Jens Lehmann

Universität Leipzig, IFI/BIS/AKSW, D-04109 Leipzig, Germany
{lastname}@informatik.uni-leipzig.de, http://aksw.org

Abstract. The vision of the Semantic Web is to make use of semantic
representations on the largest possible scale - the Web. Large knowl-
edge bases such as DBpedia, OpenCyc, GovTrack are emerging and
freely available as Linked Data and SPARQL endpoints. Exploring and
analysing such knowledge bases is a significant hurdle for Semantic Web
research and practice. As one possible direction for tackling this prob-
lem, we present an approach for obtaining complex class expressions from
objects in knowledge bases by using Machine Learning techniques. We
describe in detail how they leverage existing techniques to achieve scala-
bility on large knowledge bases available as SPARQL endpoints or Linked
Data. The algorithms are made available in the open source DL-Learner
project and we present several real-life scenarios in which they can be
used by Semantic Web applications. Because of the wide usage of the
method in several well-known tools, we optimized and benchmarked the
existing algorithms and show that we achieve an approximately 3-fold
increase in speed, in addition to a more robust implementation.

1 Introduction

The vision of the Semantic Web aims to make use of semantic representations
on the largest possible scale - the Web. Large knowledge bases such as DB-
pedia, OpenCyc, GovTrack are emerging and freely available as Linked Data
and SPARQL endpoints. Due to their sheer size, however, users of large Seman-
tic Web knowledge bases are often facing the problem, that they can hardly
know which identifiers are used and are available for the construction of queries.
Furthermore, domain experts might not be able to express their queries in a
structured form at all, but they often have a very precise imagination what kind
of results they would like to retrieve. A historian, for example, searching in DB-
pedia for ancient Greek law philosophers influenced by Plato can easily name
some examples and if presented a selection of prospective results he will be able
to quickly identify false results.

However, he might not be able to efficiently construct a formal query adher-
ing to the large DBpedia knowledge base a priori. The construction of queries
asking for objects of a certain kind contained in an ontology, such as in the

http://aksw.org

Fig. 1: Process illustration: In a first step, a fragment is selected based on in-
stances from a knowledge source and in a second step the learning process is
started on this fragment and the given examples. [1]

previous example, can be understood as a class construction problem: We are
searching for a class expression which subsumes exactly those objects adher-
ing to our informal query (e.g. ancient Greek law philosophers influenced by
Plato). Recently, several methods have been proposed for constructing ontology
classes by means of Machine Learning techniques from positive and negative ex-
amples [1]. These techniques are tailored for small and medium size knowledge
bases, while they cannot be directly applied to large knowledge bases (such as
the initially mentioned ones) due to their dependency on reasoning methods.
The scalability of the algorithms is ensured by reasoning only over ”interesting
parts” of a knowledge base for a given task. As a result users of large knowledge
bases are empowered to construct queries by iteratively providing positive and
negative examples to be contained in the prospective result set.

In this paper, we will motivate the usefulness of the method first presented
in [1] by describing the algorithm and how it is employed in several well-known
applications(HANNE, ORE, DL-Learner, Tiger Corpus Navigator, etc.). Then
we will introduce the changes we have made to improve performance of the data
acquisition method. Although the basic problem was introduced several years
ago[2], we will discuss lessons learned and actual problems in the last section.

2 Summary of the Existing SPARQL Component

In this paper, we focus on the knowledge source component, which is responsi-
ble for downloading a “relevant” fragment of the available knowledge base via
SPARQL. At the beginning, the component receives a list of positive and neg-
ative examples needed for supervised machine learning. As the separation into
positive and negative examples is irrelevant for data acquisition, a list of all (seed)
examples is created by merging. We also assume that the given examples must be
instances of an OWL class. Based on a given recursion depth parameter, the old
component retrieved all information of the seed examples naively, by traversing
the graph with SPARQL as shown in Figure 2 and without making any distinc-
tion between A- and T-Box (i.e. treating OWL axioms as triples) . Reasoning
on the resulting RDF fragment is sound, because of the monotonicity of DL, but
naturally incomplete, since we restricted the available knowledge. Nevertheless,
Hellmann et. al. [1] have shown that results are comparable to learning with the
complete data. Actually, better results can be achieved in the same time and

2

Fig. 2: Extraction with three starting example instances. The circles represent
different recursion depths. The circles around the starting instances signify re-
cursion depth 0. The larger inner circle represents the fragment with recursion
depth 1 and the largest outer circle with recursion depth 2. [1]

with less memory, as unnecessary data is not loaded into the reasoner. Next, we
briefly introduce the applications that use a SPARQL component.

HANNE (Holistic Application for Navigational KNowledge Engineering) [3]
enables users and domain experts to navigate through knowledge bases by select-
ing examples. From these examples, formal OWL class expressions are learned
on the fly by the approach presented in this article. When saved by users, these
class expressions form an expressive OWL ontology, which can be exploited in
numerous ways: as navigation suggestions for users, as a hierarchy for browsing,
and as input for a team of ontology editors

The Tiger Corpus Navigator was the predecessor of HANNE and can
profit from the improving [4].

Another interesting use case for the proposed fragment selection approach
is the debugging and maintenance of large scale ontologies. For this reason, the
fragmentation approach has been integrated in the ORE (ontology repair
and enrichment) tool. ORE [5] uses the approach to scale to larger knowl-
edge bases such as DBpedia and OpenCyc. ORE can detect inconsistencies and
unsatisfiable classes within large knowledge bases by continuously loading frag-
ments of increasing size. Furthermore, it can also learn new definitions of classes
as described previously.

AutoSPARQL [6] is a question answering support system, which uses frag-
ment extraction for an active learning algorithm. The algorithm allows to refine
results obtained from a question answering system.

DL-Learner is a framework to learn concepts in description logics [2,7], the
source code for the component is available through this project.

3 The new version of the SPARQL Component

The three tasks of the SPARQL component that are illustrated in Figure 1 are
now realized in four separate steps. 1.) The T-Box of the ontology is loaded

3

and indexed (T-Box index). 2.) All outgoing properties of seed examples and
related objects and literals are retrieved. 3.) All asserted classes are retrieved
via SPARQL. 4.) The T-Box index is used to infer the class hierarchy.

Step 1: Indexing the T-Box. The previous component traversed the T-
Box syntactically based on the retrieved triples during fragment extraction. Our
improved method first retrieves all T-Box axioms from the SPARQL endpoint
and can, optionally, also directly load an ontology file if available, which we
did in out experiments. The ontology is loaded into a reasoner and queried
once to materialize the transitive closure of the subclass hierarchy. This subclass
hierarchy is then stored in an index, which allows retrieval of superclasses in
constant time O(1).

Step 2: A-Box queries. Given a certain recursion depth, the algorithm now
traverses the A-Box part of the RDF graph based on the SPARQL template
given in Listing 1.1. EX1,..,EXn are the seed examples. After each recursion
step, EX1,...,EXn are replaced by the new objects (?o) which have not yet been
queried. The SPARQL 1.1 “IN” feature is used.1 As a last optional step, manual
filtering is used to remove data irrelevant for a learning processs.

Listing 1.1: SPARQL query for the A-Box

1 CONSTRUCT {?s ?p ?o} { ?s ?p ?o }
2 #list of all seed examples
3 FILTER (?s IN (<EX1 >, <EX2 >,...,<EXn >))
4 FILTER (!(?p=rdf:type))
5 #other filters , here excluding one specific property and all properties

of the foaf namespace
6 FILTER (?p!=<http :// dbpedia.org/property/wikiPageUsesTemplate > $$!

regex(str(?p), ’^http :// xmlns.com/foaf /0.1/ ’) && ...)

Step 3: Typing retrieved instances. Based on the A-Box data retrieved in
Step 2, we are able to query all types of the found instances (again using the
SPARQL “IN” construct) and include them in the fragment as well. To be able
to correctly type all resources, we implemented the rules introduced by Bechhofer
and Volz [8]. The SPARQL query is given here:

Listing 1.2: SPARQL query for the T-Box

1 CONSTRUCT { ?ex a ?class . } {?ex a ?class . }
2 #list of all objects
3 FILTER (?s IN (<EX1 >, <EX2 >,...,<EXn >))
4 #other filters , here excluding all classes of the yago namespace
5 FILTER (!regex(str(? class), ’^http :// dbpedia.org/class/yago/’)) . }

Step 4: T-Box Index. To complete the fragment, we iterate over all re-
trieved and included classes and query the T-Box index for all subclassof axioms
and include them in the fragment.

4 Perfomance Evaluation

The new component is compared to the old one regarding two aspects: execu-
tion time and correctness. For this, we designed an experiment using DBpedia

1 http://www.w3.org/TR/sparql11-query/#func-in

4

http://www.w3.org/TR/sparql11-query/#func-in

new component old component

Iteration Min Total Avg Min Total Avg

1 205 1,642,678 6545 3359 5,999,248 23901
2 136 744,953 4756 2295 3,707,947 19337
3 132 984,861 3924 1703 2,956,095 16817

158 1,124,165 5,075 2452 4,221,097 20019

Table 1: Performance evaluation showing runtimes in ms.(rounded)

and DL-Learner. Specifically, we used DL-Learner to generate definitions for
the DBpedia classes. The experiment is a learning problem with positive and
negative examples. Figure 1 explains how DL-Learner is working. We created
one learning task for each class in the DBpedia ontology2. Starting with the
DBpedia T-Box description, we extracted all its classes. For each of class, we re-
trieved all instances until a limit of 10000 is reached. Then, we randomly choose
30 instances and use those as positive examples. For the negatives examples
we use one sister class. A sister class is a class that has the same superclass
as the one we are processing, but naturally not the class itself. For each sis-
ter class we randomly picked 30 examples from its instances. In the case where
the class to learn or its sister have less than 30 instances, all instances are
used as positive and negative examples, respectively. As endpoint we use http:

//live.dbpedia.org/sparql. The recursion depth for each learning problem
(a DBpedia class is one learning problem) is set to 1. We excluded the fol-
lowing properties from the fragment: dbo:wikiPageUsesTemplate, dbo:wikiPageExternalLink,
dbo:wordnet_type, <http://www.w3.org/2002/07/owl#sameAs>

and classes having those prefixes:
http://dbpedia.org/class/yago/ or http://dbpedia.org/resource/Category:.

The experiments are repeated three times to reduce the effect of the network
and caching from SPARQL-endpoint. To measure the needed time we use the
JAMon framework3. We measure the execution time of the SPARQL-component
for each class to learn. After each experiment (when all classes are learned), we
compute the average time for this process. Results are shown in Table 1.

The experiments ran on a 64 bit 2.26 GHZ dual core processor and 8GB
RAM. For the old component we use the cache database. The cache has be
cleared between each class, because if a class is learned after his superclass to
ensure a fair experiment.

5 Discussion and Conclusion

Table 1 shows that the new implementation improves performance significantly.
The old component has a maximum query time of 171245 ms, the new one of
68800 ms. As explained above, a cache is not implemented (and possible not

2 http://downloads.dbpedia.org/3.6/dbpedia_3.6.owl
3 http://jamonapi.sourceforge.net/

5

http://live.dbpedia.org/sparql
http://live.dbpedia.org/sparql
http://downloads.dbpedia.org/3.6/dbpedia_3.6.owl
http://jamonapi.sourceforge.net/

necessary) in the new component. Still, the runtime improves by factor 4 on
average.

In the distribution of the F-measure, we see that the new component has a
little bit better results as the old one. One possible explanation for this is that
the queries of the new component can be executed faster and, thus, the endpoint
returns more results, which improves the approximations in the machine learning
processes. Another explanation and probably the bigger effect is that DL-Learner
with the new component returns an answer for much more classes compared to
the previous component. With the new, DL-Learner found definitions for 248
classes, whereas it did only for 158 previously.

Reasons that for DL-Learner not returning definitions are Java exceptions,
which are usually due to errors in the retrieved data. The new component fired 61
exceptions until the experiment. But only three of those caused an interruption
of the algorithm and cause the algorithm to return no answer. All of those are
com.hp.hpl.jena.shared.BadUriExceptions resulting from malformed output
from the SPARQL endpoint. The others exceptions are all parse exceptions due
to errors in the XML output of the endpoint. Those exceptions cause a loss of
some retrieved triples when they occur, but the algorithm can still recover and
terminate. The behavior is more stable than and able to recover from more types
of errors than the previous component.

Overall, we presented an improved fragment extraction component for ma-
chine learning over large SPARQL endpoints, which is more efficient and more
stable than previously published methods.

References

1. Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very
large knowledge bases. IJSWIS 5(2) (2009) 25–48

2. Lehmann, J.: DL-Learner: learning concepts in description logics. The Journal of
Machine Learning Research 10 (2009) 2639–2642

3. Hellmann, S., Unbehauen, J., Lehmann, J.: Hanne - a holistic application for navi-
gational knowledge engineering. In: Posters and Demos of ISWC. (2010)

4. Hellmann, S., Unbehauen, J., Chiarcos, C., Ngonga Ngomo, A.C.: The tiger corpus
navigator. In: Proceedings of the Ninth International Workshop on Treebanks and
Linguistic Theories (TLT9). NEALT Proceeding Series (2010)

5. Lehmann, J., Bühmann, L.: Ore - a tool for repairing and enriching knowledge
bases. In: ISWC, Springer (2010)

6. Lehmann, J., Bühmann, L.: Autosparql: Let users query your knowledge base. In:
ESWC, Springer (2011)

7. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement
operators. Machine Learning journal 78(1-2) (2010) 203–250

8. Bechhofer, S., Volz, R.: Patching syntax in OWL ontologies. In: ISWC. Volume
3298 of LNCS., Springer (2004) 668–682

6

com.hp.hpl.jena.shared.BadUriException

	Improving the Performance of the DL-Learner SPARQL Component for Semantic Web Applications

