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Abstract. Knowledge Engineering is a costly, tedious and often time-
consuming task, for which light-weight processes are desperately needed.
In this paper, we present a new paradigm - Navigation-induced Knowl-
edge Engineering by Example (NKE) - to address this problem by pro-
ducing structured knowledge as a result of users navigating through an
information system. Thereby, NKE aims to reduce the costs associated
with knowledge engineering by framing it as navigation. We introduce
and define the NKE paradigm and demonstrate it with a proof-of-concept
prototype which creates OWL class expressions based on users navigat-
ing in a collection of resources. The overall contribution of this paper
is twofold: (i) it introduces a novel paradigm for knowledge engineering
and (ii) it provides evidence for its technical feasibility.

Keywords: Navigation, Knowledge Engineering, Paradigm, Methodol-
ogy, Ontology Learning, Search, OWL

1 Introduction

Over the past years, structured data has increasingly become available on the
World Wide Web (WWW). Yet, the actual usage of this data still poses sig-
nificant barriers for lay users. One of the main drawbacks to the utilization of
the structured data on the WWW lies in the blatant cognitive gap between
the informational needs of users and the structure of existing knowledge bases.
In this paper, we propose a novel paradigm - Navigation-induced Knowledge
Engineering by Example (NKE) - which aims to bridge this gap.

Due to the sheer size of large knowledge bases, users can hardly know which
identifiers are available or useful for the construction of axioms or queries. As
a consequence, users might not be able to express their informational need in a



structured form. Yet, users often have a very precise idea of what kind of results
they would like to retrieve. A historian, for example, searching DBpedia [16]
for ancient Greek law philosophers influenced by Plato can easily name
some examples and - when presented with a selection of prospective results - she
will be able to quickly identify correct and incorrect results. However, she might
not be able to efficiently construct a formal query adhering to the large DBpedia
knowledge base.

In this paper, we will argue and show that Navigation-induced Knowledge
Engineering by Example can tackle important parts of the above described in-
formation gap problem.

In NKE, the informational need of a user is approximated, e.g. by letting
the user formulate preferences or simply by browsing an application. From this
interaction, so called positive and negative examples can be inferred that are
then used as an input to a supervised machine learning algorithm. In a final step,
generated knowledge from several user interactions is combined into a taxonomy,
which forms the basis for the knowledge engineering process. Following that
process, NKE produces structured knowledge as a by-product of users navigating
through an information system. Navigation-induced Knowledge Engineering by
Example thereby serves several purposes at the same time; it (i) aids users
in expressing their informational needs in a structured way (ii) helps them in
navigating to resources in a given system and (iii) produces structured knowledge
as a result of this process.

Most traditional Knowledge Engineering methodologies heavily rely on a
phase-oriented model built on collaboration of a centralized team of domain
experts and ontology engineers[21,22,26]. In NKE, web users take the role of
domain experts and elicitation is done en passant during the navigation process.

The vision of NKE is to enable low-cost knowledge engineering on the largest
possible scale - the World Wide Web. The most fundamental consequence of the
paradigm is that value is added to data by having a large number of users nav-
igating, using and interacting with it. A reciprocal relation is formed between
the informational need of users and the information gained through the cre-
ated taxonomy. Although structured data is becoming widely available, no other
methodology or paradigm – to the best of our knowledge – is currently able
to scale up and provide light-weight knowledge engineering for a massive user
base. Using NKE, data providers can publish flat data on the World Wide Web
without creating a detailed structure upfront, but rather observe how structure
is created on the fly by interested users who navigate the knowledge base.

In summary, this paper makes the following contributions. It

– introduces Navigation-induced Knowledge Engineering by Example (NKE)
as a new paradigm for knowledge engineering

– presents a proof-of-concept (HANNE) to demonstrate technical feasibility
– illustrates the new paradigm in an e-commerce context and a query-answering

system

The paper is structured as follows: We define Navigation-induced Knowl-
edge Engineering by Example in Section 2 and explain its concepts in detail.



To demonstrate the technical feasibility of NKE, we present HANNE – a Holis-
tic Application for Navigation-induced Knowledge Engineering by Example – in
Section 3. HANNE is an Active Machine Learning tool based on Inductive Logic
Programming that allows for the extraction of formal definitions (OWL Class
Expression) of user-defined concepts based on corresponding examples from ar-
bitrary and possibly large RDF data sets. After we have presented HANNE as
a proof-of-concept, we evaluate it in Section4. In Section 5, we review related
work on NKE, two fields that we will connect in our work. Finally, we conclude
and describe future work.

2 Navigation-induced Knowledge Engineering by
Example - A New Paradigm

In this section, we define NKE and give an explanation of the key concepts and
requirements related to this paradigm.

Definition: Navigation-induced Knowledge Engineering by Example is the
manifestation of labeled examples by interpreting user navigation combined with
the active correction and refinement of these examples by the user to create an
ontology of user interests through supervised active machine learning.

When a web site is displayed in a browser, links are presented to the user for
selection. Users typically select a subset of these links to navigate to a particular
resource or set of resources. However, as web sites are heterogeneous and thus
present a multitude of heterogeneous links, it is difficult - if not impossible - to
make proper assumptions about the users’ informational needs that are driving
their underlying navigation behavior. If we, however, constrain our focus to
web sites serving homogeneous content, such as a list of products, people or
bookmarks, it becomes easier to analyze the goal of a user more clearly.

The NKE paradigm focuses on those websites, where objects with some form
of defined semantics are available, such as Amazon products or Wikipedia arti-
cles. As the user is presented with a list of links to such objects, selecting and
clicking on a link can be interpreted as positive feedback. All other links are
neglected and can be interpreted as negative feedback. This interpretation is, of
course, an oversimplification and often wrong: A user might accidentally click
on a link or follow a link and then realize, that the target is not what she was
looking for. Furthermore not only the selected item of a list might be of interest,
but others as well. In addition, it normally remains hidden to a web system,
whether the informational need of a user changes during the course of a visit.
As soon as e.g. a product is found, the next user action might be triggered by a
different need3. In many cases however, especially in more interactive systems,
it is feasible to approximate the informational needs of a user by observing his
interactions with the system.

Navigation-induced Knowledge Engineering by Example: The NKE
paradigm consists of three distinct yet interrelated steps: (i) Navigation: NKE

3 Adding the product to a shopping cart could be a good indicator for such a change.



Fig. 1. NKE combines navigational methods with active iterative relevance feedback
to create a preliminary ontology.

starts by interpreting navigational behavior of users to infer an initial (seed)
set of positive and negative examples. (ii) Iterative Feedback: NKE supports
users in interactively refining the seed set of examples such that the final set
of objects satisfies the users’ intent. and (iii) Retention: NKE allows users to
retain previously explored sets of objects by grouping them and saving them for
later retrieval. Thus, the idea of NKE is to use clues from navigational behavior of
users in a given system to infer a seed set of positive and negative examples that
are later refined interactively by users to advance towards their search goal. This
set of examples is later used to infer semantic structures in an active machine
learning task.

In the following, we will formulate the underlying requirements related to the
three steps in greater detail:

(i) Navigation: The first requirement for NKE is the ability of a system to
approximate the informational need of a user and produce positive and/or neg-
ative examples. Many ways of approximating users’ informational needs can be
envisioned and are deployed in a multitude of traditional recommender systems.
One way of approximating users’ needs was followed in the DBpedia Naviga-
tor, an early prototype by Lehmann et al. [20]. The DBpedia Navigator could
be used to browse over Wikipedia/DBpedia articles. Each viewed article was
added automatically to the list of positive examples. A user then could review
this list and decide to move entries to the list of negative examples, instead.
Another well-known recommender system, which is based on user interaction,
is the Amazon.com sales web site. Each view of a product is remembered and
statistically analyzed to give a wide variety of personalized suggestions4: “More
Items to Consider”, “Customers with Similar Searches Purchased”, “Bestsellers
Electronics: Point & Shoot Digital Cameras”, “The Best Prices on the Most
Laptops”, “Customers Who Bought Items in Your Recent History Also Bought”
are some examples. The most prominent distinction, however, is the clear lack
to explicitly give feedback and refine the presented recommendations.

(ii) Iterative Feedback: The second requirement for NKE is to support
the user in actively managing the list of examples to steer the learning process.
In NKE, the user expresses her informational need by creating a list of positive
and negative examples. Although the initial list is gathered automatically by
a system as an interpretation of navigational behavior, a chance for correction
and iterative refinement is given at a later stage. With this requirement, the

4 Taken from the frontpage of http://amazon.com accessed on Oct, 13th 2010
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paradigm gives control to the user, who can actively model her search inquiry
based on a seed list of examples. Examples selected by users can be seen as a
gold standard of labeled data for active machine learning and the learning result
can be used to suggest more objects for labeling.

(iii) Retention: The third requirement for NKE is to enable the user to
sufficiently refine and review the learned result, and let her save it for later re-
trieval. Retention is a critical part of the NKE paradigm. After the phase of
iterative feedback is concluded, the user has to be able to judge whether the
learning result matches her needs and is worth saving. To be able to re-use the
saved concept, NKE requires users to assign a name to it. The philosophy is
straight-forward: A concept, which is saved by one user to ease further naviga-
tion, is likely to be useful to other users as well. As we will see later, the saved
concepts will form a taxonomy of user interests, which can be directly exploited
as navigational suggestions. Also, the created taxonomy can be considered a raw
material, which can be facilitated into a full-fledged domain ontology at low cost.

In the following, we explain the concepts involved in NKE in more detail:

Knowledge Source: NKE requires objects that are represented in a structured
form and stored within a knowledge base. The following are typical examples:

– OWL Individuals in an OWL knowledge base and their RDF properties.
– saved bookmarks on Delicious5 and their tags.
– products on Amazon6 and the product properties.
– newspaper articles in a newspaper database and the article attributes like

authors, keywords or links to other articles.

Note that the latter three examples can also be modeled in RDF and OWL7,
which we use for our demonstration. The NKE paradigms can be applied to all
formalisms fitting the resource-feature scheme.

Supervised Machine Learning Algorithm: As users choose exemplary re-
sources from the knowledge source, the material for applying a supervised ma-
chine learning algorithm is prepared. This algorithm can easily be exchanged
and optimized according to the data structure of the knowledge source. In our
implementation, we use an algorithm (Inductive Logic Programming) that relies
on positive and negative examples, but positive-only or negative-only can be
sufficient when using other algorithms. Furthermore, the given examples do not
need to be binary in any way and could be assigned a weight, instead. The only
limitation is that the algorithm needs to produce learned concepts, adhering to
the requirements below.

Learned Concepts: The properties of the learned concepts are central to the
NKE paradigm. The learned concepts need to serve as a classifier. This clas-
sifier can be either binary (retrieving only those resources from the pool that
are covered) or assign a weight (e.g. between 0 and 1) to every resource8. The
retrieved set of resources is called rclassified or extension of the concept. As each

5 http://www.delicious.com
6 http://amazon.com
7 For tags, see [13]. For products, see [10].
8 If the weight is combined with a threshold, the classifier becomes binary again.

http://www.delicious.com
http://amazon.com


learned concept is defined by its extension, they form a partial order by inclu-
sion: Given learned concepts C and D, D is a subconcept of C, iff rclassified by D

⊆ rclassified by C . Therefore resources, which are retrieved by a learned concept
will also be retrieved by all higher order concepts. The ordering relation is im-
portant. As learned concepts can be saved by a user for retention, the ordering
relation clearly creates a distinction between user generated data (such as tags,
which have no structure per se) and user generated knowledge.

If the classifier is additionally backed by a formalism for an intensional defi-
nition, a binary relation can be defined, which should have the same or similar
properties as the inclusion relation on the extensions. Naturally, OWL-DL fulfills
all the requirements for such a formalism. The subclassOf relation (v) – as it is
transitive and reflexive – creates a preorder over OWL class expressions.

Exploratory search with Iterative Refinement: In our approach, learned
concepts can be understood in the following way: As the user explores a knowl-
edge base, she is interested in certain kinds of resources, i.e. she tries to find a set
of resources rtarget that matches her informational need such as All bookmarks
on Java tutorials covering Spring or All notebooks with more than 2GB, Ubuntu
and costing less than 400 euros. To express her need, she navigates to resources
thereby providing a seed subset of examples r0 ⊂ rtarget in iteration 0. During
each iteration i (with i ranging from 0...n), the learning algorithm proposes to
the user a new set of resources rclassified retrieved via the learned concept. The
user then selects more resources from rclassified and adds them to ri creating
a new set ri+1. This process can be repeated by the user, until she considers
the learned concept a solution lcsolution. The standard measures recall, precision
and F-measure apply. The learned concept is correct, if rtarget = rclassified.

Two basic assumptions underly our notion of exploratory search: 1. the user
either knows all the members of rtarget or she can quickly evaluate membership
with the help of the presented information. 2. Furthermore, the user should be
able to make an educated guess about the size of rtarget. NKE therefore requires
an informed user, who can judge whether the search was successful. Although
this seems to be a hard requirement for a user, we argue that it can be met quite
easily in most cases. Albeit, one limitation of the NKE paradigm is that users
who do not know how to evaluate candidate results might be more successful
with other methods.

We can also identify several reasons why a NKE-based search might fail: 1.
a solution lcsolution exists, but the learning algorithm is unable to find it 2. a
solution does not exist, because the knowledge source lacks the necessary features
and 3. the user selects examples that contradict her informational needs.

Generated Ontology: Saving a learned concept plays a central role in NKE.
The design of any NKE system should create strong incentives for users to save
solutions once they are found. One such incentive is the ability to retain sets or
to view or export a subset of resources rclassified for later retrieval. Additionally
it is necessary that the user assigns a label upon saving. This way a hierarchy
of terms is created which forms an ontology for the domain. Such an ontology –
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Fig. 2. Illustration of a search tree in OCEL.

as it was created by users to query resources – is a useful candidate to support
future navigation or other tasks.

3 Proof-of-Concept: An OWL-Based Implementation

In this section, we introduce and present a proof-of-concept implementation
(HANNE9), where we employ DL-Learner [15] to learn class expressions. We
first briefly describe DL-Learner before we explain the HANNE prototype.

3.1 HANNE: Technical Background

DL-Learner [15]10 extends Inductive Logic Programming to Description Logics
(DLs), OWL and the Semantic Web. It provides a DL/OWL-based machine
learning framework to solve supervised learning tasks and support knowledge
engineers in constructing knowledge. In this paper, we use the OCEL algorithm
implemented in DL-Learner, because its induced classes are short and readable.
OWL class expressions form a subsumption hierarchy that is traversed by DL-
Learner starting from the top element (> in DL syntax or owl:Thing) with the
help of a refinement operator and an algorithm that searches in the space of
generated classes. For instance, Figure 2 shows an excerpt of an OCEL search
tree starting from the > concept, where the refinement operator has been applied
for the class expressions >, Person etc. The exact details of the construction and
traversal of the search tree are beyond the scope of this paper.

When OCEL terminates, it returns the best element in its search tree with
respect to a given learning problem. The path leading to such an element is
called a refinement chain. The following is an example of such a chain:

> Person Person u takesPartinIn.>
 Person u takesPartIn.Meeting

The way the refinement chains are constructed fits the iterative style of the
NKE paradigm. DL-Learner supports the use of SPARQL endpoints, and scales
to very large knowledge bases by using an approach that extracts fragments
that are small enough for faciliating real time OWL reasoning[9]. The process is
sketched in Figure 3.

9 http://hanne.aksw.org
10 http://dl-learner.org
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Fig. 3. Process illustration [9]: In a first step, a fragment is selected based on objects
from a knowledge source and in a second step the learning process is started on this
fragment and the given examples.

3.2 HANNE User Interface

The user interface presented in Figure 4 is a domain-independent implemen-
tation of the NKE paradigm, that works on any SPARQL endpoint. For our
demonstration, we chose DBpedia as an underlying knowledge base, where the
defined goal is to find all 44 U.S. Presidents. Naturally, the list of all U.S. Pres-
idents can be found much faster using e.g. Wikipedia11. For the long tail of
arbitrary information, such precompiled lists are, however, not easily available.
With HANNE, users are able to model such lists according to their information
needs as a by-product of navigation.

In our demonstration, the user starts searching for “Bush” to create an initial
set of examples. She uses the search components of HANNE marked with 1 in
Fig. 4 for that purpose. From the retrieved list of instances, she can select George
H.W. Bush and George W. Bush as positive and Kate and Jeb Bush as negative
examples. This selection forms the seed set of instances for the second phase -
iterative refinement - for which the components marked with 2 (Fig. 4) are used.
The user initiates this phase by using the “start learning” button.

The iterative feedback is implemented as follows; using our 4 initial exam-
ples, dbo:Presidents is learned. By requesting the instance matches of the
concept (button “matching”), the user can iteratively select more instances as
either positive or negative examples and thereby refine the concept. The count
of instance matches and the accuracy of the concept is displayed to help the
user estimate whether the concept satisfies her navigation needs. After selecting
3 more positive examples (George Washington, Eisenhower, Roosevelt) and 2
more negatives (Tschudi and Rabbani) the concept has been narrowed down to
(dbo:President and foaf:Person), which only covers 264 instances out of 3
million DBpedia resources. During the iterative feedback process, HANNE dis-
plays related concepts on the right side (marked with 3). These related concepts
were saved by other users and are either sub, parallel or super classes of the
learned concept. The retrieval of all 44 presidents can be successful in 3 different
ways: 1.) the iterative process is continued until all 44 presidents are added to
the positive list (successful retrieval of the extension) 2.) the learned concept

11 http://en.wikipedia.org/wiki/List_of_Presidents_of_the_United_States
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Fig. 4. Screenshot of http://hanne.aksw.org: US Presidents in DBpedia.

correctly retrieves all 44 presidents (e.g. dbo:President and dbo:geoRelated

value United States and dbo:spouse some Thing retrieves 42 instances) or
3.) a previously saved concept matches the information need (e.g “Collection of
U.S. presidents” on the right side).

Solution 1 has created an extensional definition and solution 2 an intensional
definition of the search. Both can be saved and labeled by the user to retain it
for later or to export it (either a definition or the SPARQL query to retrieve the
instances).

4 Evaluation

Our evaluation scenario is closely tied to the proof of concept implementation
presented in the previous section. The evaluation is based on Wikipedia cate-
gories, such as Ships built in Michigan or Battles involving Prussia, which are
included in DBpedia. The rationale for evaluating HANNE with the Wikipedia
category system are manifold: (1) the categories can be considered a hierarchi-
cal structure to more effectively group and browse Wikipedia articles (2) the
categories are maintained manually (which is very tedious and time-consuming)
and (3) they do not enforce a strict is-a relation to their member articles, which
means that the data contains errors from a supervised learning point of view.

From (1) follows that each category corresponds to a potential information
need of at least one user, which took the effort to create the collection. For each
category (e.g. Wrestlers at the 1938 British Empire Games12), we can formulate
a search task by preceding the category name with “Find all” . Our goal is to
evaluate how satisfactory this search task can be addressed with regular search
functionality and NKE based methods. (2) is relevant for evaluating the potential

12 http://en.wikipedia.org/wiki/Category:Wrestlers_at_the_1938_British_

Empire_Games
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of NKE in aiding users in maintaining such a category hierarchy. Finally, (3)
allows to assess NKE in realistic noisy scenarios. The evaluation is split in a
quantitative and a qualitative part.

The quantitative part will evaluate how well the underlying machine learn-
ing approach is able to find all members of a category when compared with a
keyword-based search. For the experiment, we used a SPARQL query to retrieve
a list of categories from DBpedia, which contained exactly 100 members that
had an infobox as well as an abstract property. This selection based on mem-
ber count is done to avoid bias towards particular domains of categories. The
abstract is required for the search engines and the infobox data is required as
input for the underlying machine learning algorithm. We envision the following
scenario: A user is intensively researching a topic given by the respective cate-
gory without being able to use the category itself. The main goal of the user is
to find all members exhaustively and is willing to invest some effort to reach it.

First, we simulate a keyword-based search. The keywords are initially gener-
ated from the category names, which we consider as sets of words. In a second
step, we remove all stop words and build the power set over the remaining words
W resulting in a set of Q = {q1, . . . , qn} queries with n = 2|W | − 1, (“−1” as
we exclude the empty word). Additionally, we optimized the strings by using
the singular form and special treatment of hyphens (–) resulting for example in
this set of queries: {{Wrestler, 1938, British, Empire, Game}, {Wrestler, 1938,
British, Empire}, {Wrestler, 1938, British, Game}, {Wrestler, 1938, Empire,
Game}, ...}. The search is conjunctive, so usually the queries with many words
are very specific but return few results, whereas searching with fewer words finds
more but less specific results. For each query set we vary the maximum num-
ber of results (limit) the user would look at to 20, 100 or 200. Let results(q)
be the number of results returned by query q ∈ Q and category the articles in
the considered category. We calculate the precision and recall in the following
manner:

union({q1, . . . , qn}) =

∣∣∣∣∣
(

n⋃
i=1

results(qi)

)
∩ category

∣∣∣∣∣
best({q1, . . . , qn}) =

n
max
i=1

|results(qi) ∩ category|

inter({q1, . . . , qn}) =

∣∣∣∣∣
n⋂

i=1

results(qi) ∩ category

∣∣∣∣∣

Rmax =
union(Q)

|category|
Rbest =

best(Q)

|category|
Ravg =

avg(Q)

|category|
Pbest =

best(Q)

|limit|
Pmin =

inter(Q)

|limit|

Rmax is an optimistic recall estimate taking the combination of all queries
into account, Rbest only considers the query returning most results from the
considered category and Ravg is a pessimistic estimate, which takes only those
results into account, which have been returned by each query. Similarly, Pbest

is the precision of the best query, i,e. the percentage of returned results for the
best query. Pmin considers the precision of the intersection of all queries.



BC SO DL BC SO DL BC SO DL
Limit 20 20 20 100 100 100 200 200 200

Rmax 0.03 0.07 0.07 0.12 0.22 0.29 0.17 0.28 0.31
Rbest 0.03 0.06 0.06 0.11 0.20 0.28 0.15 0.25 0.30
Ravg 0.01 0.01 0.04 0.03 0.05 0.19 0.04 0.05 0.21
Pbest 0.13 0.21 0.30 0.11 0.16 0.28 0.08 0.11 0.15
Pmin 0.04 0.05 0.20 0.03 0.04 0.19 0.02 0.02 0.10

Table 1. Evaluation results for all three approaches (BC = Virtuoso bif:contains, SO
= Solr, DL = DL-Learner) with three different limits.

We used two different query engines: (1) The Virtuoso13 internal word index
based on the titles and abstracts, which we ranked based according to the node
in-degree following the search approach in the RelFinder tool [6]. (2) a Lucene/-
Solr index, which was build from the titles and abstract and also ranked based
on node in-degree.

The keyword-based search is now compared to an iterative refinement based
on the DL-Learner algorithm used in HANNE. We assume that the user has ba-
sic domain knowledge and can name 5 members of the category, which serve as
initial positive examples. In a realistic application such an initial set could have
been selected from the navigation history, string search or facet-based brows-
ing. Here, the 5 positive articles are chosen randomly from the 100 members.
Then 5 negative examples are randomly chosen from the set of members of par-
allel categories, i.e. (non-equal) categories with the same direct predecessor in
the category graph. The OCEL algorithm, implemented in DL-Learner, is then
started and the resulting OWL Class Expression is transformed into a SPARQL
query with the same limit as above. From the result set up to 5 correctly found
articles are added to the positive examples as well as 5 negatives. This process
is repeated 5 times. We can calculate precision and recall analogously by replac-
ing the set of a set of keyword-based queries with the set of resulting SPARQL
queries, one for each of the 5 iterations.

The results in Table 1 show that DL-Learner as a recommender is competitive
with the search approaches we implemented and has higher values in all cases.
Detailed results are available at http://aksw.org/Projects/NKE.

In this experiment, we are not aiming to establish that our implementation
is better than a key word based search, as we neglected a plethora of optimiza-
tion opportunities for string search such as more normalization, ngrams, query
expansion techniques, relevance feedback, etc. We think of the searches we im-
plemented as a reasonable baseline, which are actually used in many systems
(e.g. RelFinder and DBpedia Lookup). While our searches are based on artificial
queries, future research could conduct a similiar evaluation with other queries or
actual queries obtained from a live system. In addition, the quality of the results
for DL-Learner directly depends on the availability of rich semantics and data
quality. In our evaluation, DL-Learner did not find any members for a total of 23
categories. For 11 categories, we could not find any negative examples, as there

13 Virtuoso is the triple store underlying the DBpedia SPARQL endpoint we used
bif:contains for accessing its text index.

http://aksw.org/Projects/NKE


were no parallel categories, thus the learned concept was owl:Thing. We expect
these limitations to become less relevant with the emergence of more knowledge
bases that are rich in semantics.

The qualitative part is concerned with the quality of the learned OWL
class expression. The authors as experts in ontology engineering (not domain
experts) have manually reviewed the results and we will discuss our findings
here. We use the excerpt of results shown in Table 2 for discussing four cases of
concepts learned.

Single feature concepts In case the categorization depended on a single fea-
ture, DL-Learner normally learned the appropriate concept. These learned
concepts could be added as an intensional definition to the knowledge base
and help to (1) automatically categorize new data as well as (2) find missing
properties such as familia or subdivisionName.

Overly specific concepts In (3) DL-Learner learned an overly specific con-
cept matching only 53 instances. We inspected the data in the endpoint
and found that the object values for the property shipBuilder, which is
highly relevant for this category, were of mixed quality: the property had
literal and URIs as objects and the value Defoe Shipbuilding Company

was the one that occurred most frequently (53 occurrences) followed e.g. by
Benton Harbor, Michigan (only 3 occurrences). Note that we used DBpe-
dia 3.6.1 as a basis for our experiments; newer versions might provide higher
data quality and completeness. The keyword searches failed completely in
this case, as neither “ship”, “built” or “Michigan” are selective enough.

Indirect Solution concepts An indirect solution was found for the category
in example (4) as no feature (e.g. champion value US Open) was available
to construct the concept. The solution reads like a paraphrase and uses the
property subdivisionName, which is often used by U.S. cities, which are
naturally well curated in the English Wikipedia.

Zero member concepts The examples (5) and (6) are two of the categories
for which the learned concept is retrieving zero members from the consid-
ered category. The category Northland Region (5) does not have a clear
member of relation, but is rather used as a tag to group all related arti-
cles14, thus members are too heterogeneous. For the category FC Salyut

Belgorod players (6) a pertinent and specific feature could not be found
in the data, thus it is virtually impossible to learn a formalization, which is
specific enough.

5 Related Work

5.1 Navigation

Several navigation and knowledge exploration methods can be used in combina-
tion with the proposed NKE paradigm.

14 http://en.wikipedia.org/wiki/Category:Northland_Region
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Nr Category Concept (Manchester OWL Syntax)

1 Pleuronectidae familia value Pleuronectidae

2 Villages in Milicz County Village and subdivisionName value Milicz County

3 Ships built in Michigan Ship and shipBuilder value Defoe Shipbuilding Company

4 United States Open TennisPlayer and (foaf:Person or residence

champions (tennis) some subdivisionName some PopulatedPlace))

5 Northland Region River and geoRelated value New Zealand and

mouth some Thing

6 FC Salyut currentclub some (chairman some Thing and name some

Belgorod players position value Defender %28football%29 )

Table 2. Learned concepts for sample categories with limit 100

For knowledge bases with a sufficiently small schema, techniques like facet-
based browsing are commonly used. One of those tools is the Neofonie Browser15.
For very large schemata, facet-based browsing or browsing based on the class
hierarchy can become cumbersome and graphical models are used. One example
of that uses graphical models is the RelFinder [6]. A user can enter a number
of interesting instances and the tool visualises the relationship between those
instances as an RDF graph, which can then be explored by the user. Another
navigation method is user specific recommendations. Once a user has viewed
certain entities, e.g. products, recommender systems can suggest similar prod-
ucts. Often, this is done based on the behavior of other users, but some systems
use background knowledge for recommendations. In the simple case, this can
be taxonomical knowledge [28], but has recently also been extended to OWL
ontologies [20]. The NKE paradigm is based on the latter idea and translates it
to the knowledge engineering use case.

Models of user navigation have been successfully used in a range of related
domains. For example, in the domain of tagging systems, navigational models
[8] as well as behavioral and psychological theories are exploited to evaluate
taxonomic structures [7], to assess the motivation for tagging [25], or to improve
the quality of emergent semantics [14] and social classification tasks [29]. While
navigational models have been applied to improve or evaluate (unstructured)
semantics in these domains, they have not been extensively applied to structured
knowledge bases. This paper sets out to address this gap.

5.2 Knowledge Engineering

Knowledge engineering aims to incorporate knowledge into computer systems
to solve complex tasks. It spans across several disciplines including artificial
intelligence, databases, software engineering and data mining. Most traditional
Knowledge Engineering methodologies heavily rely on a phase-oriented model
built on collaboration of a centralized team of domain experts and ontology
engineers[21,22,26]. In particular, Pinto et al. [22] characterize the future settings
for evolving ontology building as:

Highly distributed: Anyone can contribute more knowledge.

15 http://dbpedia.neofonie.de



Highly dynamic: Several contributors may be changing knowledge at the
same time, with high change rates.
Uncontrolled: There is no control over what information is added, and the
quality and reliability of that information. In this case, there will be a lot of
noise (positive and negative contributions), and not everybody contributing
to the ontology will be focused on the same task or have the same purpose.

In their survey, they argue that future methodologies will need to cope with
these properties to be successful and to scale up to the increasing availability of
ontologies. In NKE, web users take the role of domain experts and elicitation is
done en passant during the navigation process. To the best of our knowledge,
NKE is currently the only methodology that is not only able to cope with all
three properties, but is also designed to exploit them to generate ontologies.

[12] distinguish between the domain axiomatization and the application ax-
iomatization. Although in NKE, the generated ontology of user interest is similar
to the mentioned application axiomatization, the DOGMA approach might not
be directly applicable to NKE as it uses a domain ontology view to interpret the
application model. Ontology matching algorithms could be employed, however,
instead of the proposed double articulation to mediate between the application
ontologies.

In the following, we briefly discuss work related to Ontology Learning, Knowl-
edge Base Completion and Relational Exploration. Many approaches to Ontol-
ogy learning rely on Natural Language Processing (NLP) and have the goal of
learning ontologies from plain text. Other approaches range from using game
playing [24] to Formal Concept Analysis (FCA) and Inductive Logic Program-
ming (ILP) techniques. The line of work which was started in [23] and continued
by, for instance [1], investigates the use of formal concept analysis for completing
knowledge bases. It is mainly targeted towards less expressive description logics
and may not be able to handle noise as well as a machine learning technique. In
a similar fashion, [27] proposes to improve knowledge bases through relational
exploration and implemented it in the RELExO framework16.

A different approach to extending ontologies is to learn definitions of classes.
For instance, [2] proposes to use the non-standard reasoning tasks of computing
most specifics concepts (MSCs) and least common subsumers (LCS) to find
such definitions. For light-weight logics, such as EL, the approach appears to
be promising. There are also a number of approaches using machine learning
techniques to learn definitions and super classes in OWL ontologies. Some of
those rely on MSCs as well [4,5,11] while others use so called top down refinement
approaches [18,19]. Indeed, the HANNE and Geizhals backends are based on
extensions of this work in [19] and [17].

In related research on natural language interfaces, [3] investigate so called
intensional answers. For instance, a query “Which states have a capital?” can
return the name of all states as an extensional answer or “All states (have a cap-
ital).” as an intensional answer. Such answers can sometimes reveal interesting
knowledge and they can also be used to detect flaws in a knowledge base.

16 http://relexo.ontoware.org/
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6 Conclusions and Future Work

The contribution of this paper lies in the presentation of a new paradigm -
Navigation-induced Knowledge Engineering by Example - that conceptually in-
tegrates user navigation into a coherent framework for knowledge engineering by
the masses. We provided a concise definition of NKE, provide a general proof-of-
concept prototype demonstrating its technical feasibility, and show its practical
applicability in two different application domains. It is the hope of the authors
that the presentation of this paradigm ignites and stimulates further work on
the development of navigational approaches to knowledge engineering.
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