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Abstract. Accessing the wealth of structured data available on the Data
Web is still a key challenge for lay users. Keyword search is the most
convenient way for users to access information (e.g., from data reposito-
ries). In this paper we introduce a novel approach for determining the
correct resources for user-supplied keyword queries based on a hidden
Markov model. In our approach the user-supplied query is modeled as
the observed data and the background knowledge is used for parameter
estimation. Instead of learning parameter estimation from training data,
we leverage the semantic relationships between data items for comput-
ing the parameter estimations. In order to maximize accuracy and us-
ability, query segmentation and resource disambiguation are mutually
tightly interwoven. First, an initial set of potential segmentations is ob-
tained leveraging the underlying knowledge base; then the final correct
set of segments is determined after the most likely resource mapping was
computed using a scoring function. While linguistic methods like named
entity, multi-word unit recognition and POS-tagging fail in the case of
an incomplete sentences (e.g. for keyword-based queries), we will show
that our statistical approach is robust with regard to query expression
variance. Our experimental results when employing the hidden Markov
model for resource identification in keyword queries reveal very promising
results.

1 Introduction

The Data Web currently amounts to more than 31 billion triples1 and contains a
wealth of information on a large number of different domains. Yet, accessing this
wealth of structured data remains a key challenge for lay users. The same prob-
lem emerged in the last decade when users faced the huge amount of information
available of the Web. Keyword search has been employed by popular Web search
engines to provide access to this information in a user-friendly, low-barrier man-
ner. Meanwhile, keyword search has become one of the most convenient way for
users to access information on the Web [23]. The large amount of research on

1 See http://www4.wiwiss.fu-berlin.de/lodcloud/state/ (May 23th, 2012)



the successful application of keyword-based search in document retrieval and the
acknowledged usability of this paradigm are convincing reasons for employing
the keyword search paradigm also on the Data Web. However, keyword search
in structured data raises three main difficulties:

– First, the right segments of data items that occur in the keyword queries have
to be identified. For example, the query ‘Who produced films starring Natalie
Portman’ can be segmented to (‘produce’, ‘film’, ‘star’, ‘Natalie Portman’ ) or
(‘produce’, ‘film star’, ‘Natalie’, ‘Portman’ ). Note that the first segmentation
is more likely to lead to a query that contain the results intended for by the
user.

– Second, these segments have to be disambiguated and mapped to the right
resources. Note that the resource ambiguity problem is of increasing impor-
tance as the size of knowledge bases on the Linked Data Web grows steadily.
Considering the previous example2, the segment ‘film’ is ambiguous because
it may refer to the class dbo:Film (the class of all movies in DBpedia) or to
the properties dbo:film or dbp:film (which relates festivals and the films
shown during these festivals).

– Finally, adequate SPARQL queries have to be generated based on these
resources.

While the third step has been addressed in previous works [23, 14, 19], only little
attention has been paid to the first two steps in the context of keyword search on
Linked Data. Yet, these two steps play a crucial role in the querying of structured
data as a wrong segmentation mostly leads to a wrong resource identification,
which itself induces the computation of erroneous SPARQL queries.

In this paper, we present an automatic query segmentation and resource dis-
ambiguation approach leveraging background knowledge. The initial query seg-
mentation step of our approach transforms input query words into segments in
either a naive or a greedy fashion. These segments are then mapped to candidate
sets of resources found in the knowledge base (essentially properties, instances
and classes). A single query segment is mapped to multiple resources and iden-
tification of the correct resource is ambiguous. We identify the correct resources
from the various candidate resources associated with each segment of a given
query which will be referred to as resource disambiguation. Determining the com-
bination of resources is then carried out by using a hidden Markov model, where
the user-supplied query is modeled as the observed data and the background
knowledge is used for parameter estimation. In order to maximize accuracy and
usability, query segmentation and resource disambiguation are mutually tightly
interwoven. Our approach returns a list of segmentations and resource map-
pings ranked by a scoring function based on the likelihood of the segmentation
and disambiguation based on the observed data. Note that we do not rely on
training data for the parameter estimation. Instead, we leverage the semantic
relationships between data items for this purpose. While linguistic methods like

2 The underlying knowledge base and schema used throughout the paper for examples
and evaluation is DBpedia 3.7 dataset and ontology.



named entity, multi-word unit recognition and POS-tagging fail in the case of
an incomplete sentences (e.g. for keyword-based queries), we will show that our
statistical approach is robust with regard to query expression variance.

This article is organized as follows: We review related work in Section 2. In
Section 3 we present formal definitions laying the foundation for our work. In
the section 4 our approach is discussed in detail. For a comparison with natural
language processing (NLP) approaches section 5 introduces an NLP approach
for segmenting query. Section 6 presents experimental results. In the last section,
we close with a conclusion and an outlook on potential future work.

2 Related Work

Our approach is mainly related to two areas of research: text and query segmen-
tation and entity disambiguation. Text segmentation has been studied exten-
sively in the natural language processing (NLP) literature, and includes tasks
such as noun phrase chunking where the task is to recognize the chunks that
consist of noun phrases (see e.g., [17]). Yet, such approaches cannot be applied
to query segmentation since queries are short and composed of keywords. Conse-
quently, NLP techniques for chunking such as part-of-speech tagging [4] or name
entity recognition [7, 5] cannot achieve high performance when applied to query
segmentation. Segmentation methods for document-based Information Retrieval
can be categorized into statistical and non-statistical algorithms. As an example
of none statistical methods, [16] addresses the segmentation problem as well as
spelling correction. Each keyword in a given query is first expanded to a set
of similar tokens in the database. Then, a dynamic programming algorithm is
used to search for the segmentation based on a scoring function. The statisti-
cal methods fall into two groups, namely supervised and unsupervised methods.
For example, the work presented in [21] proposes an unsupervised approach to
query segmentation in Web search. Yet this technique can not be easily applied
to structured data. Supervised statistical approaches are used more commonly.
For example, [28] presents a principled statistical model based on Conditional
Random Fields (CRF) whose parameters are learned from query logs. For de-
tecting named entities, [9] uses query log data and Latent Dirichlet Allocation.
In addition to query logs, various external resources such as Webpages, search
result snippets and Wikipedia titles have been used [18, 22, 3]. Current segmen-
tation algorithms are not applicable to our segmentation problem for several
reasons. First, because they mostly are not intended for search on structured
data, it is not guaranteed that the segments they retrieve are actually part of
the underlying knowledge base. Another problem with these segmentation al-
gorithms is that they ignore the semantic relationships between segments of a
segmentation. Thus, they are likely to return sub-optimal segmentations.

An important challenge in Web search as well as in Linked Data Search is
entity disambiguation. Keyword queries are usually short and inherently lead to
significant keyword ambiguity as one query word may represent different infor-
mation needs for different users [24]. There are different ways for tackling this



Data: q: n-tuple of keywords, knowledge base
Result: SegmentSet: Set of segments

1 SegmentSet=new list of segments;
2 start=1;
3 while start <= n do
4 i = start;
5 while S(start,i) is valid do
6 SegmentSet.add(S(start,i));
7 i++;

8 end
9 start++;

10 end
Algorithm 1: Naive algorithm for determining all valid segments taking the
order of keywords into account.

challenge; firstly, query clustering [6, 26, 2] applies unsupervised machine learn-
ing to cluster similar queries. The basic insight here is that it has been observed
that users with similar information needs click on a similar set of pages, even
though the queries they pose may vary. Other approaches apply query disam-
biguation, which tries to find the most appropriate sense of each keyword. To
achieve this goal, one way is involving the user in selecting the correct sense [11,
10, 27]. Another technique for disambiguation is personalized search by using a
history of the user activities to tailor the best choice for disambiguation [1, 20,
29]. Still, the most common approach is using context for disambiguation [15,
8, 13]. Albeit context has been defined vaguely (with various definitions), herein
we define context as information surrounding the given query which can be em-
ployed for augmenting search results. In this work, resource disambiguation is
based on a different type of context: we employ the structure of the knowledge
at hand as well as semantic relations between the candidate resources mapped
to the possible segmentations of the input query.

3 Formal Specification

RDF data is modeled as a directed, labeled graph G = (V,E) where V is a
set of nodes i.e. the union of entities and property values, and E is a set of
directed edges i.e. the union of object properties and data value properties. The
user-supplied query can be either a complete or incomplete sentence. However,
after removing the stop words, typically set of keywords remains. The order in
which keywords appear in the original query is partially significant. Our approach
can map adjacent keywords to a joint resource. However, once a mapping from
keywords to resources is established the order of the resources does not affect
the SPARQL query construction anymore. This is a reasonable assumption, since
users will write strongly related keywords together, while the order of only loosely
related keywords or keyword segments may vary. The input query is formally
defined as an n-tuple of keyword, i.e. Q = (k1, k2, ..., kn). We aim to transform



the input keywords into a suitable set of entity identifiers, i.e. resources R =
{r1, r2...rm}. In order to accomplish this task the input keywords have to be
grouped together as segments and for each segment a suitable resource should
be determined.

Definition 1 (Segment and Segmentation). For a given query Q, a segment
S(i,j) is a sequence of keywords from start position i to end position j which
is denoted as S(i,j) = (ki, ki+1, ..., kj). A query segmentation is an m-tuple of
segments SGq = (S(0,i), S(i+1,j), ..., S(m,n)) where the segments do not overlap
with each other and arranged in a continuous order, i.e. for two continuous
segments Sx, Sx+1 : Start(Sx+1) = End(Sx) + 1. The concatenation of segments
belonging to a segmentation forms the corresponding input query Q.

Definition 2 (Resource Disambiguation). Lets the segmentation SG′ =
(S1

(0,i), S
2
(i+1,j), ..., S

x
(m,n)) be a suitable segmentation for the given query Q. Each

segment is mapped to multiple candidate resources from the underlying knowl-
edge base, i.e. Si → Ri = {r1, r2...rh}. The aim of disambiguation is to choose
an x-tuple of resources from the Cartesian product of sets of candidate resources
(r1, r2, ..., rx) ∈ {R1 × R2 × ...Rx} for which each ri has two important prop-
erties. First, it is among the highest ranked candidates for the corresponding
segment with respect to the similarity as well as popularity and second it shares
a semantic relationship with other resources in the x-tuple.

When considering the order of keywords, the number of segmentations for
a query Q consisting of n keywords is 2(n−1) . However, not all these segmen-
tations contain valid segments. A valid segment is a segment for which at least
one matching resource can be found in the underlying knowledge base. Thus,
the number of segmentations is reduced by excluding those containing invalid
segments. Algorithm 1 shows a naive approach for finding all valid segments
when considering the order of keywords. It starts with the first keyword in the
given query as first segment, then it includes the next keyword into the current
segment as a new segment and checks whether adding the new keyword would
make the new segment no longer valid. We repeat this process until we reach the
end of the query. Algorithm 2 shows a greedy approach for generating segments.
It also starts with the first keyword in the given query as the first segment but
keeps including the next keywords into the current segment until adding the
new keyword would make the current segment no longer valid. Then, another
segment starts from the current position. As a running example, lets assume the
input query is ‘Give me all video games published by Mean Hamster Software’.
Table 1 shows the set of valid segments based on naive algorithm along with
some samples of the candidate resources.

Resource Disambiguation using a ranked list of Cartesian product tuples. A naive
approach for finding the correct x − tuple of resources is using a ranked list of
tuples from the Cartesian product of sets of candidate resources {R1 × R2 ×
...Rn}. The n-tuples from the Cartesian product are simply sorted based on
the aggregated relevance score (e.g. similarity and popularity) of all contained
resources.



4 Query Segmentation and Resource Disambiguation
using Hidden Markov Models

In this section we describe how hidden Markov models are used for query seg-
mentation and resource disambiguation. First we introduce the concept of hidden
Markov models and then we detail how we define the parameters of a hidden
Markov model for solving the query segmentation and entity disambiguation
problem.

4.1 Hidden Markov Models

The Markov model is a stochastic model containing a set of states. The pro-
cess of moving from one state to another state generates a sequence of states.
The probability of entering each state only depends on the previous state. This
memoryless property of the model is called Markov property. Many real-world
processes can be modeled by Markov models. A hidden Markov model is an
extension of the Markov model, which allows the observation symbols to be
emitted from each state with a finite probability. The main difference is that by
looking at the observation sequence we cannot say exactly what state sequence
has produced these observations; thus, the state sequence is hidden. However,
the probability of producing the sequence by the model can be calculated as well
as which state sequence was most likely to have produced the observations.

A hidden Markov model (HMM) is a quintuple λ = (X,Y,A,B, π) where:

– X is a finite set of states, Y denotes the set of observed symbols;
– A : X × X → R is the transition matrix that each entry aij = Pr(Sj |Si)

shows the transition probability from state i to state j;
– B : X × Y → R represents the emission matrix, in which each entry bih =
Pr(h|Si) is associated with the probability of emitting the symbol h from
state i;

– π denoting the initial probability of states πi = Pr(Si).

Data: q: n-tuple of keywords, knowledge base
Result: SegmentSet: Set of segments

1 SegmentSet=new list of segments;
2 start=1;
3 while start <= n do
4 i = start;
5 while S(start,i) is valid do
6 SegmentSet.add(S(start,i));
7 i++;

8 end
9 start=i;

10 end
Algorithm 2: Greedy algorithm for determining valid segments taking the
order of keywords into account.



Segments Samples of Candidate Resources
video 1. dbp:video

video game 1. dbo:VideoGame

game
1. dbo:Game 2. dbo:games 3. dbp:game
4. dbr:Game 5. dbr:Game_On

publish 1. dbo:publisher 2. dbp:publish 3. dbr:Publishing

mean 1. dbo:meaning 2. dbp:meaning 3. dbr:Mean 4. dbo:dean

mean hamster 1. dbr:Mean_Hamster_Software

mean hamster software 1. dbr:Mean_Hamster_Software

hamster 1. dbr:Hamster

software 1. dbo:Software 2. dbp:software

Table 1. Generated segments and samples of candidate resources for a given query.

4.2 State Space and Observation Space

State Space. A state represents a knowledge base entity. Each entity has an
associated rdfs:label which we use to label the states. The actual number of
states X is potentially high because it contains theoretically all RDF resources,
i.e. X = V ∪ E. However, in practice we limit the state space by excluding
irrelevant states. A relevant state is defined as a state for which a valid segment
can be observed. In other words, a valid segment is observed in an state if the
probability of emitting that segment is higher than a certain threshold θ. The
probability of emitting a segment from a state is computed based on a similarity
scoring which we describe in the section 4.3. Therefore, the state space of the
model is pruned and contains just a subset of resources of the knowledge base,
i.e. X ⊂ V ∪ E. In addition to these candidate states, we add an unknown
entity state to the set of states. The unknown entity (UE) state comprises all
entities, which are not available (anymore) in the pruned state space.

Observation Space. The observation space is the set of all valid segments found
in the input user query (using e.g. the Algorithm 1). It is formally is defined as
O = {o|o is a valid segment}.

4.3 Emission Probability

Both the labels of states and the segments contain sets of words. For computing
the emission probability of the state i and the emitted segment h, we compare
the similarity of the label of state i with the segment h in two levels, namely
string-similarity level and set-similarity level:

– The set-similarity level measures the difference between the label and the
segment in terms of the number of words using the the Jaccard similarity.

– The string-similarity level measures the string similarity of each word in
the segment with the most similar word in the label using the Levenshtein
distance.

Our similarity scoring method is now a combination of these two metrics.
Consider the segment h = (ki, ki+1, ..., kj) and the words from the label l divided



into a set of keywords M and stopwords N , i.e. l = M ∪N . The total similarity
score between keywords of a segment and a label is then computed as follows:

bih = Pr(h|Si) =

j∑
k=i

argmax∀mi∈M (σ(mi, kt))

|M ∪ h|+ 0.1 ∗ |N |

This formula is essentially an extension of the Jaccard similarity coefficient. The
difference is that in the numerator, instead of using the cardinality of intersec-
tions the sum of the string-similarity score of the intersections is computed. As
in the Jaccard similarity, the denominator comprises the cardinality of the union
of two sets (keywords and stopwords). The difference is that the number of stop-
words have been down-weighted by the factor 0.1 to reduce their influence (since
they do not convey much meaningful information).

4.4 Hub and Authority of States

Hyperlink-Induced Topic Search (HITS) is a link analysis algorithm for ranking
Web pages [12]. It assigns a hub value and an authority value to each Web
page. The hub value for each page estimates the value of its links to other pages
and the authority value estimates the value of the content of a page. Authority
and hub values are defined in terms of one another and computed in a series
of iterations. In each iteration the authority value is updated to the sum of the
hub scores of each referring page; and the hub value is updated to the sum
of the authority scores of each referring page. After each iteration, hub and
authority values are normalized. This normalization process causes these values
to converge eventually. Since RDF data is graph-structured data and entities
are linked together, we employed a weighted version of the HITS algorithm in
order to assign different popularity values to the states in the state space. For
each state we assign a hub value and an authority value. A good hub state is
one that points to many good authority states and a good authority state is
one that is pointed to from many good hub states. Before discussing the HITS
computations, we define the edges between the states in the HMM. For each
two states i and j in the state space, we add an edge if there is a path in the
knowledge base between the two corresponding resources of maximum length
k. Note, that we also take property resources into account when computing the
path length.The path length between resources in the knowledge base is assigned
as weight to the edge between corresponding states. We use a weighted version
of the HITS algorithm to take the distance between states into account. The
authority of a state is computed as:

For all Si ∈ S which point to Sj : authSj
=

∑
∀i

wi,j ∗ hubSi

And the hub value of a state is computed as:

For all Si ∈ S which are pointed to by Sj : hubSj =
∑
∀i

wi,j ∗ authSi



The weight wi,j is defined as wi,j = k−pathLength(i, j), where pathLength(i, j)
is the length of the path between i and j. These definitions of hub and authority
for states are the foundation for computing the transition probability in the
underlying hidden Markov model.

4.5 Transition Probability

As mentioned in the previous section, each edge between two states shows the
shortest path between them with the length less or equal to k-hop. The edges are
weighted by the length of the path. Transition probability shows the probability
of going from state i to state j. For computing the transition probability, we take
into account the connectivity of the whole of space state as well as the weight of
the edge between two states. The transition probability values decrease with the
distance of the states, e.g. transitions between entities in the same triple have
higher probability than transitions between entities in triples connected through
extra intermediate entities. In addition to the edges recognized as the shortest
path between entities, there is an edge between each state and the Unknown
Entities state. The transition probability of state j following state i denoted as
aij = Pr(Sj |Si). For each state i the condition

∑
∀Sj

Pr(Sj |Si) = 1 should be

held. The transition probability from the state i to Unknown Entity (UE) state
is defined as:

aiUE = Pr(UE|Si) = 1− hubSi

And means a good hub has less probability to go to UE state. Thereafter, the
transition probability from the state i to state j is computed as:

aij = Pr(Sj |Si) =
authSj∑

∀aik>0

authSk

∗ hubSi

Here, the edges with the low distance value and higher authority values are more
probable to be met.

4.6 Initial Probability

The initial probability πSi
is the probability that the model assigns to the initial

state i in the beginning. The initial probabilities fulfill the condition
∑
∀Si

πSi
= 1.

We denote states for which the first keyword is observable by InitialStates. If
we assume πUE equals β, then the πSi

of the initial states are defined as follows:

πSi =
authSi

+ hubSi∑
∀Sj∈InitialStates

(authSj + hubSj )
∗ (1− β)

In fact, πSi
of an initial state depends on both hub and authority values.

Figure 1 illustrates an instantiated hidden markov model. The set of hidden
states are represented by circles. The state UE refers to the absent resources
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Fig. 1. Trellis representation of Hidden Markov Model.

in the model and other hidden states are relevant resources. Each segment box
represents a possible observation. The arrows show a transition from one state
to another state and the dashed arrows shows an emitted observation associated
with a specific state.

4.7 Viterbi Algorithm for the K-best Set of Hidden States

The optimal path through the markov model for a given sequence (i.e. input
query keywords) reveals disambiguated resources forming a correct segmenta-
tion. The Viterbi algorithm or Viterbi path is a dynamic programming approach
for finding the optimal path through the markov model for a given sequence.
It discovers the most likely sequence of underlying hidden states that might
have generated a given sequence of observations. This discovered path has the
maximum joint emission and transition probability of involved states. The sub
paths of this most likely path also have the maximum probability for the re-
spective sub sequence of observations. The naive version of this algorithm just
keeps track of the most likely path. We extended this algorithm using a tree
data structure to store all possible paths generating the observed query key-
words. Therefore, in our implementation we provide a ranked list of all paths
generating the observation sequence with the corresponding probability. After
running the Viterbi algorithm for our running example, the disambiguated re-
sources are: {dbo:VideoGame, dbo:publisher, dbr:Mean-Hamster-Software} and
consequently the reduced set of valid segments is: {VideoGam, publisher, Mean-
Hamster-Software} .

5 Query Segmentation using Natural Language
Processing

Natural language processing (NLP) techniques are commonly used for text seg-
mentation. Here, we use a combination of named entity and multi-word unit



recognition services as well as POS-tagging for segmenting the input-query. In
the following, we discuss this approach in more detail.

Detection of Segments: Formally, the detection of segments aims to transform
the set of keywords K = {k1, .., kn} into a set of segments T = {t1, ..., tm}
where each ki is a substring of exactly one tj ∈ T . Several approaches have
already been developed for this purpose, each with its own drawbacks: Semantic
lookup services (e.g., OpenCalais3 and Yahoo! SeoBook4 as used in the current
implementation) allow to extract named entities (NEs) and multi-word units
(MWUs) from query strings. While these approaches work well for long queries
such as “Films directed by Garry Marshall starring Julia Roberts”, they fail
to discover noun phrases such as “highest place” in the query “Highest place
of Karakoram”. We remedy this drawback by combining lookup services and a
simple noun phrase detector based on POS tags. This detector first applies a
POS tagger to the query. Then, it returns all sequences of keywords whose POS
tags abide by the following right-linear grammar:

1. S → adj A 2. S → nn B 3. A→ B
4. B → nn 5. B → nn B

where S is the start symbol, A and B are non-terminal symbols and nn (noun)
as well as adj (adj) are terminal symbols. The compilation of segments is carried
as follows: We send the input K to the NE and MWU detection services as well
as to the noun phrase detector. Let N be the set of NEs, M the set of MWUs
and P the set of noun phrases returned by the system. These three sets are
merged to a set of labels L = (N ⊕M)⊕ P, where ⊕ is defined as follows:

A⊕B = A ∪B\{b ∈ B|∃a ∈ A overlap(a, b)}, (1)

where overlap(a, b) is true if the strings a and b overlap. The operation ⊕ adds
the longest elements of B to A that do not overlap with A. Note that this
operation is not symmetrical and prefers elements of the set A over those of
the set B. For example, “river which Brooklyn Bridge crosses” leads to N
= {“Brooklyn Bridge”}, M = {“Brooklyn” , “Brooklyn Bridge”} and P =
{“Brooklyn Bridge”}. Thus, L = (N ⊕M)⊕P = {“Brooklyn Bridge”}. The
final set of segments T is computed by retrieving the set of all single keywords
that were not covered by the approaches above and that do not occur in a
list of stopwords. Thus, for the query above, T = {“Brooklyn Bridge”, “river”,
“cross”}.

6 Evaluation

The goal of our experiments was to measure the accuracy of resource disam-
biguation approaches for generating adequate SPARQL queries. Thus, the main
question behind our evaluation was as follows: Given a keyword-based query(KQ)

3 http://viewer.opencalais.com/
4 http://tools.seobook.com/yahoo-keywords/



or a natural-language query (NL) and the equivalent SPARQL query, how well
do the resources computed by our approaches resemble the gold standard. It is
important to point out that a single erroneous segment or resource can lead to
the generation of a wrong SPARQL query. Thus, our criterion for measuring the
correctness of segmentations and disambiguations was that all of the recognized
segments as well as all of the detected resources had to match the gold standard.

6.1 Experimental Setup

So far, no benchmark for query segmentation and resource disambiguation has
been proposed in literature. Thus, we created such a benchmark from the DB-
pedia fragment of the question answering benchmark QALD-2 5. The QALD-
2 benchmark data consists of 100 training and 100 test questions in natural-
language that are transformed into SPARQL queries. In addition, it contains a
manually created keyword-based representation of each of the natural-language
questions. The benchmark assumed the generic query generation steps for ques-
tion answering: First, the correct segments have to be computed and mapped to
the correct resources. Then a correct SPARQL query has to be inferred by join-
ing the different resources with supplementary resources or literals. As we are
solely concerned with the first step in this paper, we selected 50 queries from the
QALD-2 benchmark (25 from the test and 25 from the training data sets) that
were such that each of the known segments in the benchmark could be mapped
to exactly one resource in the SPARQL query and vice-versa. Therewith, we
could derive the correct segment to resource mapping directly from the bench-
mark6. Queries that we discarded include “Give me all soccer clubs in Spain”,
which corresponds to a SPARQL query containing the resources {dbo:ground,
dbo:SoccerClub, dbr:Spain }. The reason for discarding this particular query
was that the resource dbo:ground did not have any match in the list of keywords.
Note that we also discarded queries requiring schema information beyond DBpe-
dia schema. Furthermore, 6 queries out of the 25 queries from the training data
set7 and 10 queries out of 25 queries from the test data set8 required a query
expansion to map the keywords to resources. For instance, the keyword “wife”
should be matched with “spouse” or “daughter” to “child”.

Given that the approaches at hand generate and score several possible seg-
mentations (resp. resource disambiguation), we opted for measuring the mean
reciprocal rank MRR [25] for both the query segmentation and the resource
disambiguation tasks. For each query qi ∈ Q in the benchmark, we compare
the rank ri assigned by different algorithms to the correct segmentation and to
the resource disambiguation: MRR(A) = 1

|Q|
∑
qi

1
ri
. Note that if the correct seg-

mentation (resp. resource disambiguation) was not found, the reciprocal rank is

5 http://www.sc.cit-ec.uni-bielefeld.de/qald-2
6 The queries and result of the evaluation and source code is available for download

at http://aksw.org/Projects/lodquery
7 Query IDs: 3, 6, 14, 43, 50, 93.
8 Query IDs: 3, 20, 28, 32, 38, 42, 46, 53, 57, 67.
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Fig. 2. Mean reciprocal rank of query segmentation (first stage).

assigned the value 0. At last, we should mention that the employed setting for
the parameter k as the number of hops is 6, β as the initial probability to the
unknown entity (UE) state is 0 and the threshold θ for punning the state space
is equal to 0.7.

6.2 Results

We evaluated our hidden Markov model for resource disambiguation by com-
bining it with the naive (Naive & HMM) and the greedy segmentation (Greedy
& HMM) approaches for segmentation. We use the natural language process-
ing (NLP) approach as a baseline in the segmentation stage. For the resource
disambiguation stage, we combine ranked Cartesian product (RCP) with the
natural language processing (NLP & RCP) and manually injected the correct
segmentation (RCP) as the baseline. Note that we refrained from using any query
expansion method. The segmentation results are shown in Figure 2. The MRR
are computed once with the queries that required expansion and once without.
Figure 2(a), including queries requiring expansion, are slightly in favor of NLP,
which achieves on overage a 4.25% higher MRR than Naive+HMM and a 24.25%
higher MRR than Greedy+HMM. In particular, NLP achieves optimal scores
when presented with the natural-language representation of the queries from the
“train” data set. Naive+HMM clearly outperforms Greedy+HMM in all settings.
The main reason for NLP outperforming Naive+HMM with respect to the seg-
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Fig. 3. Mean reciprocal rank of resource disambiguation (second stage).

mentation lies in the fact that Naive+HMM and Greedy+HMM are dependent
on matching segments from the query to resources in the knowledge base (i.e. seg-
mentation and resource disambiguation are interwoven). Thus, when no resource
is found for a segment (esp. for queries requiring expansion) the HMM prefers an
erroneous segmentation, while NLP works independent from the disambiguation
phase. However, as it can be observed NLP depends on the query expression.
Figure 2(b) more clearly highlights the accuracy of different approaches. Here,
the MRR without queries requiring expansion is shown. Naive+HMM perfectly
segments both natural language and keyword-based queries. The superiority of
intertwining segmentation and disambiguation in Naive+HMM is clearly shown
by our disambiguation results in the second stage in Figure 3. In this stage,
Naive+HMM outperforms Greedy+HMM, NLP+RCP and RCP in all four ex-
perimental settings. Figure 3(a) shows on average 24% higher MRR, although
queries requiring expansion are included. In the absence of the queries that re-
quired an expansion (Figure 3(b)), Naive+HMM on average by 38% superior
to all other approaches and 25% superior to RCP. Note that RCP relies on
correct segmentation which in reality is not always a valid assumption. Gener-
ally, Naive+HMM being superior to Greedy+HMM can be expected, since the
naive approach for segmentation generates more segments from which the HMM
can choose. Naive+HMM outperforming RCP (resp. NLP+RCP) is mostly re-
lated to RCP (resp. NLP+RCP) often failing to assign the highest rank to the



correct disambiguation. One important feature of our approach is, as the evalu-
ation confirms, the robustness with regard to the query expression variance. As
shown in Figure 3, Naive+HMM achieves the same MRR on natural-language
and the keyword-based representation of queries on both – the train and the
test – datasets. Overall, Naive+HMM significantly outperforms our baseline
Greedy+HNM as well as state-of-the-art techniques based on NLP.

7 Conclusion and Future Work

In this work, we presented an approach to entity disambiguation based on hidden
Markov models. Our approach can carry out the parameter estimation necessary
to configure the model by employing the knowledge base to query as background
knowledge. Our evaluation shows, that our approach achieves significantly better
results than state-of-the-art methods based on employing NLP techniques. When
excluding queries requiring query expansion (which was out of the scope of this
article) we achieve near optimal results.

This work represents a first step in a larger research agenda. Ultimately, we
aim to realize a search engine for the Data Web, which is as easy to use as
search engines for the Document Web, but allows to create complex queries and
returns comprehensive structured query results9. A first area of improvements
is related to using dictionary knowledge such as hypernyms, hyponyms or co-
hyponyms to extend our segments. By these means, we would be able to map
wife to spouse, daughter to child, etc. Query expansion might also, however,
result in a more noisy input for our model. Thus, a careful extension of our
approach and analysis of the results will be required. In addition, we will extend
our approach with a query cleaning algorithm. The input query might contain
some keywords which semantically are not related to the rest of keywords. Since
user usually is looking for information semantically closely related to each other,
these unrelated keywords (i.e. noise) should be cleaned.
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