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Abstract. One of the major obstacles for a wider usage of web data
is the difficulty to obtain a clear picture of the available datasets. In
order to reuse, link, revise or query a dataset published on the Web
it is important to know the structure, coverage and coherence of the
data. In order to obtain such information we developed LODStats – a
statement-stream-based approach for gathering comprehensive statistics
about datasets adhering to the Resource Description Framework (RDF).
LODStats is based on the declarative description of statistical dataset
characteristics. Its main advantages over other approaches are a smaller
memory footprint and significantly better performance and scalability.
We integrated LODStats with the CKAN dataset metadata registry and
obtained a comprehensive picture of the current state of a significant
part of the Data Web.

1 Introduction

For assessing the state of the Web of Data in general, for evaluating the quality
of individual datasets as well as for tracking the progress of Web data publishing
and integration it is of paramount importance to gather comprehensive statistics
on datasets describing their internal structure and external cohesion. We even
deem the difficulty to obtain a clear picture of the available datasets to be a
major obstacle for a wider usage of the Web of Data. In order to reuse, link,
revise or query a dataset published on the Web it is important to know the
structure, coverage and coherence of the data.

In this article we present LODStats – a statement-stream-based approach
for gathering comprehensive statistics from resources adhering to the Resource
Description Framework (RDF). One rationale for the development of LODStats
is the computation of statistics for resources from the Comprehensive Knowledge
Archive (CKAN, “The Data Hub”1) on a regular basis. Datasets from CKAN
are available either serialised as a file (in RDF/XML, N-Triples and other for-
mats) or via SPARQL endpoints. Serialised datasets containing more than a few
million triples tend to be too large for most existing analysis approaches as the
size of the dataset or its representation as a graph exceeds the available main
memory, where the complete dataset is commonly stored for statistical process-
ing. LODStats’ main advantage when compared to existing approaches is its
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superior performance, especially for large datasets with many millions of triples,
while keeping its extensibility with novel analytical criteria straightforward. It
comes with a set of 32 different statistics, amongst others are those covering the
statistical criteria defined by the Vocabulary of Interlinked Datasets [1] (VoID).
Examples of available statistics are property usage, vocabulary usage, datatypes
used and average length of string literals. Our implementation is written in
Python and available as a module for integration with other projects.

Obtaining comprehensive statistical analyses about datasets facilitates a num-
ber of important use cases and provides crucial benefits. These include:

Quality analysis. A major problem when using Linked Data is quality. However,
the quality of the datasets itself is not so much a problem as assessing and
evaluating the expected quality and deciding whether it is sufficient for a certain
application. Also, on the traditional Web we have very varying quality, but
means were established (e.g. page rank) to assess the quality of information on
the document web. In order to establish similar measures on the Web of Data
it is crucial to assess datasets with regard to incoming and outgoing links, but
also regarding the used vocabularies, properties, adherence to property range
restrictions, their values etc. Hence, a statistical analysis of datasets can provide
important insights with regard to the expectable quality.

Coverage analysis. Similarly important as quality is the coverage a certain
dataset provides. We can distinguish vertical and horizontal coverage. The for-
mer providing information about the properties we can expect with the data
instances, while the later determines the range (e.g. spatial, temporal) of identi-
fying properties. In the case of spatial data, for example, we would like to know
the region the dataset covers, which can be easily derived from minimum, max-
imum and average of longitude and latitude properties (horizontal coverage). In
the case of organizational data we would like to determine whether a dataset
contains detailed address information (vertical coverage).

Privacy analysis. For quickly deciding whether a dataset potentially containing
personal information can be published on the Data Web, we need to get a quick
overview on the information contained in the dataset without looking at every
individual data record. An analysis and summary of all the properties and classes
used in a dataset can quickly reveal the type of information and thus prevent
the violation of privacy rules.

Link target identification. Establishing links between datasets is a fundamen-
tal requirement for many Linked Data applications (e.g. data integration and
fusion). Meanwhile, there are a number of tools available which support the
automatic generation of links (e.g. [11,10]). An obstacle for the broad use of
these tools is, however, the difficulty to identify suitable link targets on the Data
Web. By attaching proper statistics about the internal structure of a dataset (in
particular about the used vocabularies, properties etc.) it will be dramatically
simplified to quickly identify suitable target datasets for linking. For example,



the usage of longitude and latitude properties in a dataset indicates that this
dataset might be a good candidate for linking spatial objects. If we additionally
know the minimum, maximum and average values for these properties, we can
even identify datasets which are suitable link targets for a certain region.

The contributions of our work are in particular: (1) A declarative repre-
sentation of statistical dataset criteria, which allows a straightforward extension
and implementation of analytical dataset processors and additional criteria (Sec-
tion 2.1). (2) A comprehensive survey of statistical dataset criteria derived from
RDF data model elements, survey and combination of criteria from related work
and expert interviews (Section 2.2). (3) A LODStats reference implementation
(Section 3), which outperforms the state-of-the-art on average by 30-300% and
which allows to generate a statistic view on the complete Data Web in just a few
hours of processing time. We provide an overview on related work in the areas
of RDF statistics, stream processing and Data Web analytics in Section 4 and
conclude with an outlook on future work in Section 5.

2 Statistical Criteria

In this section we devise a definition for statistical dataset criteria, survey ana-
lytical dataset statistics and explain how statistics can be represented in RDF.

2.1 Definition

The rationale for devising a declarative definition of statistical criteria is that it
facilitates understandability and semantic clarity (since criteria are well defined
without requiring code to be analyzed to understand what is actually computed),
extensibility (as a statistical dataset processor can generate statistics which are
defined after design and compile time) and to some extent scalability (because
the definition can be designed such that statistical analyses can be performed
efficiently). This definition formalizes our concept of a statistical criteria:

Definition 1 (Statistical criteria). A statistical criterion is a triple pF,D, P q,
where:

– F is a SPARQL filter condition.
– D is a data structure for storing intermediate results and a description how

to fill this data structure with values from the triple stream after applying F .
– P is a post-processing filter operating on the data structure D.

Explanations: F serves as selector to determine whether a certain triple trig-
gers the alteration of a criteria. We use single triple patterns (instead of graph
patterns) and additional filter conditions to allow an efficient stream processing
of the datasets. The dataset is processed triple by triple and each triple read is
matched against each triple pattern of each criterion.2 With the filter condition
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we can further constrain the application of a criteria, e.g. only to triples having
a literal as object (using isLiteral(?o)).

For the data structure D, we usually make use of some counter code referring
to variables of the triple pattern, for example, H[ns(?subject)]++, where H is
a hash map and the function ns returns the namespace of the IRI supplied as
a parameter. The counter code is an assertion of values to certain elements of
the hash table D. Our survey of statistical criteria revealed that simple arith-
metics, string concatenation (and in few cases the ternary operator) are sufficient
to cover many purposes. Of course there are tasks for which LODStats is not
suitable, e.g. measuring data duplication via string similarities.

In the simplest case P just returns exactly the values from the data structure
D, but it can also retrieve the top-k elements of D or perform certain additional
computations. In most cases, however, post-processing is not required.

Example 1 (Subject vocabularies criterion). This example illustrates the statis-
tical criterion subject vocabularies, which collects a list of the 100 vocabularies
mostly used in the subjects of the triples of an RDF dataset.

– Criterion name: Subject vocabularies
– Description: Lists all vocabularies used in subjects together with their oc-

currence
– Filter clause: - (empty)
– Counter data structure: hash map (initially empty)
– Counter code: H[ns(?subject)]++ (ns is a function returning the name-

space of the IRI given as parameter, i.e. the part of the IRI after the last
occurrence of ‘/’ or ‘#’)

– Post-processing filter: top(H,100)

Statistical criteria can also be understood as a rule-based formalism. In this
case, F is the condition (body of the rule) and D an action (head of the rule). P
is only applied after executing such a rule on all triples. In Table 1, we present
the more compact rule syntax of our statistical criteria to save space. Statistical
criteria are evaluated in our framework according to Algorithm 1. Note that the
triple input stream can be derived from various sources, specifically RDF files
in different syntactic formats and SPARQL endpoints.

2.2 Statistical criteria survey

In order to obtain a set of statistical criteria which is as complete as possible,
we derived criteria from:

(1) analysing RDF data model elements, i.e. possible elements as subjects,
predicates and objects in an RDF statement, composition of IRIs (comprising
namespaces) and literals (comprising datatypes and language tags, (2) surveying
and combining statistical criteria from related work particularly from VoID and
RDFStats [9], (3) expert interviews, which we performed with representatives
from the AKSW research group and the LOD2 project.



Algorithm 1: Evaluation of a set of statistical criteria on a triple stream.

Data: CriteriaSet CS; TripleInputStream S
forall the Criteria C P CS do

initialise datastructures

while S.hasNext() do
Triple T = S.next();
forall the Criteria C P CS do

if T satisfies C.T and C.F then
execute C.D;
if datastructures exceed threshold then

purge datastructures;

forall the Criteria C P CS do
execute C.P and return results

While collecting and describing criteria, we put an emphasis on generality and
minimality. Hence, we tried to identify criteria which are as general as possible,
so that more specialized criteria can be automatically derived. For example,
collecting minimum and maximum values for all numeric and date time property
values also allows us to determine the spatial or temporal coverage of the dataset,
by just extracting values from the result list for spatial and temporal properties.
The 32 statistical criteria that we obtained can be roughly divided in schema
and data level ones. A formal representation using the definition above is given
in Table 1. A complete list of all criteria and detailed textual explanations is
available from the LODStats project page3.

Schema Level. LODStats can collect comprehensive statistics on the schema ele-
ments (i.e. classes, properties) defined and used in a dataset. LODStats is also
able to analyse more complex schema level characteristics such as the class hier-
archy depth. In this case we store the depth position of each encountered class,
for example, in a hash table data structure. In fact, since the position can not
be determined when reading a particular rdfs:subClassOf triple, we store that
the hierarchy depth of the subject is one level more than the one of the object.
The exact values then have to be computed in the post-processing step. This ex-
ample already illustrates that despite its focus on efficiency in certain cases the
intermediate data structure or the time required for its post-processing might
get very large. For such cases (when certain pre-configured memory thresholds
are exceeded), we implemented an approximate statistic where the anticipated
least popular information stored in our intermediate data structure is purged.
Such a proceeding guarantees that statistics can be computed efficiently even if
datasets are adversely structured (i.e. a very large dataset containing deep class
hierarchies such as the the NCBI Cancer ontology). Results are in such cases
appropriately marked to be approximate.
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Criterion Rules (Filter Ñ Action) Postproc.

1 used classes ?p=rdf:type && isIRI(?o) Ñ S += ?o –

2 class usage count ?p=rdf:type && isIRI(?o) Ñ M[?o]++ top(M,100)

3 classes defined ?p=rdf:type && isIRI(?s) Ñ S += ?s –

&&(?o=rdfs:Class||?o=owl:Class)

4 class hierarchy ?p = rdfs:subClassOf && Ñ G += (?s,?o) hasCycles(G) ?

depth isIRI(?s) && isIRI(?o) 8 : depth(G)

5 property usage Ñ M[?p]++ top(M,100)

6 property usage Ñ M[?s] += ?p sum(M)

distinct per subj.

7 property usage Ñ M[?o] += ?p sum(M)

distinct per obj.

8 properties Ñ M[?s] += ?p sum(M)/size(M)

distinct per subj.

9 properties Ñ M[?o] += ?p sum(M)/size(M)

distinct per obj.

10 outdegree Ñ M[?s]++ sum(M)/size(M)

11 indegree Ñ M[?o]++ sum(M)/size(M)

12 property ?p=rdfs:subPropertyOf && Ñ G += (?s,?o) hasCycles(G) ?

hierarchy depth isIRI(?s) && isIRI(?o) 8 : depth(G)

13 subclass usage ?p = rdfs:subClassOf Ñ i++ –

14 triples Ñ i++ –

15 entities Ñ i+=size(iris( –

mentioned {?s,?p,?o}))

16 distinct entities Ñ S+=iris({?s,?p,?o}) –

17 literals isLiteral(?o) Ñ i++ –

18 blanks as subj. isBlank(?s) Ñ i++ –

19 blanks as obj. isBlank(?o) Ñ i++ –

20 datatypes isLiteral(?o) Ñ M[dtype(?o)]++ –

21 languages isLiteral(?o) Ñ H[language(?o)]++ –

22 I typed string isLiteral(?o) && Ñ i++; len/i

length datatype(?o)=xsd:string len+=len(?o)

23 I untyped isLiteral(?o) && Ñ i++; len/i

string length datatype(?o) = NULL len+=len(?o)

24 typed subj. ?p = rdf:type Ñ i++ –

25 labeled subj. ?p = rdfs:label Ñ i++ –

26 sameAs ?p = owl:sameAs Ñ i++ –

27 links ns(?s) != ns(?o) Ñ M[ns(?s)+ns(?o)]++ –

28 max per property datatype(?o)={xsd:int| Ñ M[?p]=max( –

{int,float,time} xsd:float|xsd:datetime} M[?p],?o)

29 I per property datatype(?o)={xsd:int| Ñ M[?p]+=?o; M[?p]/M2[?p]

{int,float,time} xsd:float|xsd:datetime} M2(?p)++

30 subj. vocabularies Ñ M[ns(?s)]++ –

31 pred. vocabularies Ñ M[ns(?p)]++ –

32 obj. vocabularies Ñ M[ns(?o)]++ –

Table 1. Definition of schema level statistical criteria. Notation conventions: G =
directed graph; M = map; S = set; i, len = integer. += and ++ denote standard additions
on those structures, i.e. adding edges to a graph, increasing the value of the key of a
map, adding elements to a set and incrementing an integer value. iris takes a set as
input and all elements of it, which are IRIs. ns returns the namespace of a resource .
len returns the length of a string. language and dtype return datatype resp. language
tag of a literal. top(M,n) return first n elements of the map M.



Data Level. In addition to schema level statistics we collect all kinds of data
level ones. As the simplest statistical criterion, the number of all triples seen is
counted. Furthermore, entities (triples with a resource as subject), triples with
blanks as subject or object, triples with literals, typed subjects, labeled sub-
jects and triples defining an owl:sameAs link are counted. A list of the different
datatypes used for literals, i.e. string, integer etc., can be compiled by LODStats.
Data about which languages and how often they are used with literals by the
dataset is made available to the user. If string or untyped literals are used by
the dataset, their overall average string length can be computed. Statistics about
internal and external links (i.e. triples where the namespace of the object differs
from the subject namespace) are also collected. Spatial and temporal statistics
can be easily computed using the min/max/avg. per integer/float/time property.

2.3 Representing Dataset Statistics with VoiD and Data Cube

Currently, 32 different statistical criteria can be gathered with LODStats. To rep-
resent these statistics we used the Vocabulary of Interlinked Datasets (VoID, [1])
and the Data Cube Vocabulary [8]. VoID is a vocabulary for expressing metadata
about RDF datasets comprising properties to represent a set of relatively simple
statistics. DataCube is a vocabulary based on the SDMX standard and especially
designed for representing complex statistics about observations in a multidimen-
sional attribute space. Due to the fact that many of the listed 32 criteria are not
easily representable with VoID we encode them using the Data Cube Vocabulary,
which allows to encode statistical criteria using arbitrary attribute dimensions.
To support linking between a respective void:Dataset and a qb:Observation,
we simply extended VoID with the object property void-ext:observation.

Using the default configuration of LODStats the following criteria are gath-
ered and represented using the listed VoID properties: triples (void:triples),
entities (void:entities), distinct resources (void:distinctSubjects), dis-
tinct objects (void:distinctObjects), classes defined (void:classes), prop-
erties defined (void:properties), vocabulary usage (void:vocabulary). Addi-
tional criteria such as class/property usage, class/property usage distinct per sub-
ject, property usage distinct per object are represented using void:classPartition

and void:propertyPartition as subsets of void:document.

3 LODStats Architecture and Implementation

LODStats is written in Python and uses the Redland library [4] and its bindings
to Python to parse files and process them statement by statement. Resources
reachable via HTTP, contained in archives (e.g. zip, tar) or compressed with gzip
or bzip2 are transparently handled by LODStats. SPARQLWrapper4 is used for
augmenting LODStats with support for SPARQL endpoints. Statistical crite-
ria may also have an associated equivalent SPARQL query that will be used in
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case a certain dataset is not available in serialised form. Classes for gathering
statistics support this by implementing a method with one or more SPARQL
queries that produce results equivalent to those gathered using the statement-
based approach. However, during our experiments it turned out that this variant
is relatively error prone due to timeouts and resource limits. A second option we
experimentally evaluated is to emulate the statement-based approach by pass-
ing through all triples stored in the SPARQL endpoint using queries retrieving
a certain dataset window with LIMIT and OFFSET. Note that this option seems
to work generally in practice, but requires the use of an (arbitrary) ORDER BY

clause to return deterministic results. Consequently, this option also did not al-
ways render satisfactory results, especially for larger datasets due to latency and
resource restrictions. However, our declarative criteria definition allows SPARQL
endpoint operators to easily generate statistics right on their infrastructure. We
plan to discuss support for the generation, publishing, advertising and discov-
ery of statistical metadata by directly integrating respective modules into triple
store systems.

LODStats has been implemented as a Python module with simple calling
conventions, aiming at general reusability. It is available for integration with the
Comprehensive Knowledge Archiving Network (CKAN), a widely used dataset
metadata repository, either as a patch or as an external web application using
CKAN’s API. Integration with other (non-Python) projects is also possible via
a command line interface and a RESTful web service.

4 Related Work

In this section we provide an overview on related work in the areas of RDF
statistics, stream processing and Data Web analytics.

RDF Statistics. Little work has been done in the area of RDF statistics, mainly
including make-void5 and rdfstats [9]. Make-void is written in Java and utilizes
the Jena toolkit to import RDF data and generate statistics conforming to VoID
using SPARQL queries via Jena’s ARQ SPARQL processor. RDFStats uses the
same programming environment and library for processing RDF as make-void.
It does not aim at generating VoID, but rather uses the collected statistics for
optimising query execution.

RDF Stream Processing and SPARQL Stream Querying. Processing data datum
by datum is commonplace in general (e.g. SAX6) and especially was so before
the advent of computing machinery with larger main memory and software fa-
cilitating the retrieval of specific data. Processing RDF resources statement by
statement is not a new concept as well; most RDF serialisation parsers inter-
nally work this way. Redland [4] additionally offers a public interface (Parser.
parse as stream) for parsing and working with file streams in this manner.
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Furthermore, there are approaches for querying RDF streams with SPARQL
such as Continous SPARQL (C-SPARQL) [3] and Streaming SPARQL [6]. Both
represent adaptions of SPARQL which enable the observation of RDF stream
windows (most recent triples of RDF streams). A further advancement, EP-
SPARQL [2], is a unified language for event processing and stream reasoning.
The main difference between these approaches and LODStats is that LODStats
works on single triple patterns, thus does not require processing windows and
offers even higher performance while limiting the processing capabilities. Such a
processing limitation is sensible for the generation of dataset statistics, but not
acceptable for general purpose stream processing.

Data Web analytics. Since 2007 the growth of the Linked Open Data Cloud
is being examined. As a result, a visualization of the Linked Data space, its
distribution and coherence are periodically published7. The main difference to
stats.lod2.eu is that this information is partially entered manually in The
Data Hub and updated infrequently, whereas using LODStats we can perform
those calculations automatically. Both approaches lead to interesting informa-
tion on the structure of the LOD cloud. Statistics about the Linked Data Cloud
are summarized in [5], containing multiple aspects such as the usage of vocab-
ularies as well as provenance and licensing information in published datasets.
Furthermore, a comprehensive analysis of datasets indexed by the semantic web
search engine Sindice8 was published in [7]. It also contains a set of low-level
statistical information such as the amount of entities, statements, literals and
blank nodes. Unlike Sindice, which also indexes individual Web pages and small
RDF files, LODStats focuses on larger datasets.

Another related area is data quality. One of the purposes of collecting statis-
tics about data is to improve their quality. For instance, vocabulary reuse is
improved, since stats.lod2.eu allows to easily check which existing classes and
properties are widely used already. Since we do not directly pursue an improve-
ment of data quality in this article, but focus on dataset analytics, we refrain
from referring to the large body of literature in the data quality area.

5 Conclusions

With LODStats we developed an extensible and scalable approach for large-scale
dataset analytics. By integrating LODStats with CKAN (the metadata home of
the LOD Cloud) we aim to provide a timely and comprehensive picture of the
current state of the Data Web. It turns out that many other statistics are actu-
ally overly optimistic – the amount of really usable RDF data on the Web might
be an order of magnitude lower than what other statistics suggest. Frequent
problems that we encountered are in particular outages and restricted access
to or non-standard behavior of SPARQL endpoints, serialization and packaging
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problems, syntax errors and outdated download links. Some of these problems
can also be attributed to CKAN entries not being sufficiently up-to-date. How-
ever, even though a dataset might be available at a different URL this poor user
experience might be one of the reasons why Linked Data technology is still often
perceived being too immature for industrial-strength applications. We hope that
LODStats can contribute to overcoming this obstacle by giving dataset providers
and stakeholders a more qualitative, quantitative and timely picture of the state
of the Data Web as well as its evolution.

Future Work. While LODStats already delivers decent performance, a direct
implementation of the approach in C/C++ and parallelization efforts might
render additional performance boosts. Preliminary experimentation shows that
such an approach would result in an additional performance increase by a factor
of 2-3. Our declarative criteria definition allows SPARQL endpoint operators
to easily generate statistics right on their infrastructure. We plan to integrate
support for the generation, publishing, advertising and discovery of statistical
metadata by directly integrating respective modules into the triple store systems
(our Python implementation can serve as reference implementation). Last but
not least we plan to increase the support for domain specific criteria, which can
be defined, published and discovered using the Linked Data approach itself. For
example, for geo-spatial datasets criteria could be defined, which determine the
distribution or density of objects of a certain type in certain regions.
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